Semi-supervised training for conditional random fields with pseudo auxiliary task

Jie Liu, Yalou Huang
{"title":"Semi-supervised training for conditional random fields with pseudo auxiliary task","authors":"Jie Liu, Yalou Huang","doi":"10.1109/ICMLC.2011.6016764","DOIUrl":null,"url":null,"abstract":"Conditional random fields (CRFs) have been successful in many sequence labeling tasks, which conventionally rely on a hand-craft feature representation of input data. However, a powerful data representation could be another determining factor of the performance, which has not attracted enough attention yet. We describe a novel sequence labeling framework that builds a supervised CRF and an unsuper-vised dynamic model on a shared nonlinear feature transformation neural network. The model could be used for transfer learning by jointly optimizing two learning tasks together. We demonstrate the effectiveness of the proposed modeling framework using synthetic data. We also show that this model yields a significant improvement of recognition accuracy over conventional CRFs on gesture recognition tasks.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conditional random fields (CRFs) have been successful in many sequence labeling tasks, which conventionally rely on a hand-craft feature representation of input data. However, a powerful data representation could be another determining factor of the performance, which has not attracted enough attention yet. We describe a novel sequence labeling framework that builds a supervised CRF and an unsuper-vised dynamic model on a shared nonlinear feature transformation neural network. The model could be used for transfer learning by jointly optimizing two learning tasks together. We demonstrate the effectiveness of the proposed modeling framework using synthetic data. We also show that this model yields a significant improvement of recognition accuracy over conventional CRFs on gesture recognition tasks.
带伪辅助任务的条件随机场半监督训练
条件随机场(CRFs)在许多序列标记任务中取得了成功,这些任务通常依赖于输入数据的手工特征表示。然而,强大的数据表示可能是性能的另一个决定因素,这一点尚未引起足够的重视。我们描述了一种新的序列标记框架,该框架在共享非线性特征转换神经网络上建立了一个有监督的CRF和一个无监督的动态模型。该模型可以通过对两个学习任务进行联合优化来实现迁移学习。我们使用合成数据证明了所提出的建模框架的有效性。我们还表明,在手势识别任务上,该模型比传统的CRFs产生了显著的识别精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信