Prediction of ventricular tachycardia using morphological features of ECG signal

Atiye Riasi, M. Mohebbi
{"title":"Prediction of ventricular tachycardia using morphological features of ECG signal","authors":"Atiye Riasi, M. Mohebbi","doi":"10.1109/AISP.2015.7123515","DOIUrl":null,"url":null,"abstract":"Ventricular tachyarrhythmia particularly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the main causes of sudden cardiac death in the world. A reliable predictor of an imminent episode of ventricular tachycardia that could be incorporated in an implantable defibrillator capable of preventive therapy would have important clinical utilities. As variability of T wave, ST segment and QT interval are indicators of cardiac instability, these changes can lead us to develop accurate predictor for VT. In this study, we present an algorithm that predicts VT using morphological features of electrical signal of ventricles activity obtained from Electrocardiogram (ECG). Changes in T wave, ST segment, QT interval and numbers of premature ventricular complexes(PVCs) are considered as effective indicators of VT. Classification of selected features by a Support Vector Machine (SVM) can identify hidden patterns in ECG signals before VT occurrence. Evaluation of this algorithm on 40 recods of VT patient and 40 control records shows that the proposed algorithm can reach sensitivity of 88% and specificity of 100% in VT prediction.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Ventricular tachyarrhythmia particularly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the main causes of sudden cardiac death in the world. A reliable predictor of an imminent episode of ventricular tachycardia that could be incorporated in an implantable defibrillator capable of preventive therapy would have important clinical utilities. As variability of T wave, ST segment and QT interval are indicators of cardiac instability, these changes can lead us to develop accurate predictor for VT. In this study, we present an algorithm that predicts VT using morphological features of electrical signal of ventricles activity obtained from Electrocardiogram (ECG). Changes in T wave, ST segment, QT interval and numbers of premature ventricular complexes(PVCs) are considered as effective indicators of VT. Classification of selected features by a Support Vector Machine (SVM) can identify hidden patterns in ECG signals before VT occurrence. Evaluation of this algorithm on 40 recods of VT patient and 40 control records shows that the proposed algorithm can reach sensitivity of 88% and specificity of 100% in VT prediction.
利用心电信号形态学特征预测室性心动过速
室性心动过速(Ventricular tachy心动过速,VT)和心室颤动(Ventricular fibrillation, VF)是世界范围内心脏性猝死的主要原因。一种可靠的预测室性心动过速即将发作的方法,可以与具有预防治疗能力的植入式除颤器结合使用,具有重要的临床应用价值。由于T波、ST段和QT间期的变异性是心脏不稳定的指标,这些变化可以帮助我们开发准确的VT预测器。在本研究中,我们提出了一种算法,该算法利用心电图(ECG)获得的心室活动电信号的形态学特征来预测VT。T波、ST段、QT间期和室性早搏数目的变化被认为是室性早搏的有效指标。通过支持向量机(SVM)对所选特征进行分类,可以识别室性早搏发生前心电信号中隐藏的模式。通过对40例VT患者和40例对照患者病历的评价表明,该算法对VT预测的敏感性为88%,特异性为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信