Predictive Sampling of Facial Expression Dynamics Driven by a Latent Action Space

Giuseppe Boccignone, Matteo Bodini, Vittorio Cuculo, G. Grossi
{"title":"Predictive Sampling of Facial Expression Dynamics Driven by a Latent Action Space","authors":"Giuseppe Boccignone, Matteo Bodini, Vittorio Cuculo, G. Grossi","doi":"10.1109/SITIS.2018.00031","DOIUrl":null,"url":null,"abstract":"We present a probabilistic generative model for tracking by prediction the dynamics of affective spacial expressions in videos. The model relies on Bayesian filter sampling of facial landmarks conditioned on motor action parameter dynamics; namely, trajectories shaped by an autoregressive Gaussian Process Latent Variable state-space. The analysis-by-synthesis approach at the heart of the model allows for both inference and generation of affective expressions. Robustness of the method to occlusions and degradation of video quality has been assessed on a publicly available dataset.","PeriodicalId":267494,"journal":{"name":"2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a probabilistic generative model for tracking by prediction the dynamics of affective spacial expressions in videos. The model relies on Bayesian filter sampling of facial landmarks conditioned on motor action parameter dynamics; namely, trajectories shaped by an autoregressive Gaussian Process Latent Variable state-space. The analysis-by-synthesis approach at the heart of the model allows for both inference and generation of affective expressions. Robustness of the method to occlusions and degradation of video quality has been assessed on a publicly available dataset.
基于潜在动作空间的面部表情动态预测采样
我们提出了一个概率生成模型,通过预测视频中情感空间表达的动态来跟踪。该模型依赖于以动作参数动态为条件的面部标志的贝叶斯滤波采样;即,由自回归高斯过程潜变量状态空间形成的轨迹。模型核心的综合分析方法允许推理和情感表达的生成。该方法对遮挡和视频质量退化的鲁棒性已在公开可用的数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信