Sparsh Garg, Utkarsh Mehrotra, G. Krishna, A. Vuppala
{"title":"Towards a Database For Detection of Multiple Speech Disfluencies in Indian English","authors":"Sparsh Garg, Utkarsh Mehrotra, G. Krishna, A. Vuppala","doi":"10.1109/NCC52529.2021.9530043","DOIUrl":null,"url":null,"abstract":"The detection and removal of disfluencies from speech is an important task since the presence of disfluencies can adversely affect the performance of speech-based applications such as Automatic Speech Recognition (ASR) systems and speech-to-speech translation systems. From the perspective of Indian languages, there is a lack of studies pertaining to speech disfluencies, their types and frequency of occurrence. Also, the resources available to perform such studies in an Indian context are limited. Through this paper, we attempt to address this issue by introducing the IIITH-Indian English Disfluency (IIITH-IED) Dataset. This dataset consists of 10-hours of lecture mode speech in Indian English. Five types of disfluencies - filled pause, prolongation, word repetition, part-word repetition and phrase repetition were identified in the speech signal and annotated in the corresponding transcription to prepare this dataset. The IIITH-IED dataset was then used to develop frame-level automatic disfluency detection systems. Two sets of features were extracted from the speech signal and then used to train classifiers for the task of disfluency detection. Amongst all the systems employed, Random Forest with MFCC features resulted in the highest average accuracy of 89.61% and F1-score of 0.89.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The detection and removal of disfluencies from speech is an important task since the presence of disfluencies can adversely affect the performance of speech-based applications such as Automatic Speech Recognition (ASR) systems and speech-to-speech translation systems. From the perspective of Indian languages, there is a lack of studies pertaining to speech disfluencies, their types and frequency of occurrence. Also, the resources available to perform such studies in an Indian context are limited. Through this paper, we attempt to address this issue by introducing the IIITH-Indian English Disfluency (IIITH-IED) Dataset. This dataset consists of 10-hours of lecture mode speech in Indian English. Five types of disfluencies - filled pause, prolongation, word repetition, part-word repetition and phrase repetition were identified in the speech signal and annotated in the corresponding transcription to prepare this dataset. The IIITH-IED dataset was then used to develop frame-level automatic disfluency detection systems. Two sets of features were extracted from the speech signal and then used to train classifiers for the task of disfluency detection. Amongst all the systems employed, Random Forest with MFCC features resulted in the highest average accuracy of 89.61% and F1-score of 0.89.