Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen
{"title":"A Rectangle Mining Method for Understanding the Semantics of Financial Tables","authors":"Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen","doi":"10.1109/ICDAR.2017.52","DOIUrl":null,"url":null,"abstract":"Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.