A Rectangle Mining Method for Understanding the Semantics of Financial Tables

Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen
{"title":"A Rectangle Mining Method for Understanding the Semantics of Financial Tables","authors":"Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen","doi":"10.1109/ICDAR.2017.52","DOIUrl":null,"url":null,"abstract":"Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.
一种理解财务表语义的矩形挖掘方法
财务报表在具有复杂语义结构的表中报告关键信息,这些表的自动解释是可取的,但也是具有挑战性的。例如,在这样的表中,一行数据单元格通常由其他行的标题解释。与现有技术不同,我们提出了一个用于理解复杂表的矩形挖掘框架,它考虑的是矩形区域,而不是表中的单个单元格或单元格对。我们用ReMine(一种提取表的行头语义的算法)实例化了这个框架,并表明它在两个数据集上显著优于之前的成对分类方法:(i)一组来自多家公司的手动标记的财务表,以及(ii) ICDAR 2013表竞争数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信