{"title":"Matrix Factorization Recommendation Algorithm Based on User Characteristics","authors":"Hongtao Liu, Ouyang Mao, Chen Long, Xueyan Liu, Zhenjia Zhu","doi":"10.1109/SKG.2018.00012","DOIUrl":null,"url":null,"abstract":"Matrix Factorization is a popular and successful method. It is already a common model method for collaborative filtering in recommendation systems. As most of the scoring matrix is sparse and the dimensions are increasing rapidly, the prediction accuracy and calculation time of the current matrix decomposition are limited. In this paper, a matrix decomposition model based on user characteristics is proposed, which can effectively improve the accuracy of predictive scoring and reduce the number of iterations. By testing the actual data and comparing it with the existing recommendation algorithm, the experimental results show that the method proposed in this paper can predict user's score well.","PeriodicalId":265760,"journal":{"name":"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Matrix Factorization is a popular and successful method. It is already a common model method for collaborative filtering in recommendation systems. As most of the scoring matrix is sparse and the dimensions are increasing rapidly, the prediction accuracy and calculation time of the current matrix decomposition are limited. In this paper, a matrix decomposition model based on user characteristics is proposed, which can effectively improve the accuracy of predictive scoring and reduce the number of iterations. By testing the actual data and comparing it with the existing recommendation algorithm, the experimental results show that the method proposed in this paper can predict user's score well.