Estimating inertia distribution to enhance power system dynamics

Yajun Wang, Horacio Silva-Saravia, Héctor Pulgar-Painemal
{"title":"Estimating inertia distribution to enhance power system dynamics","authors":"Yajun Wang, Horacio Silva-Saravia, Héctor Pulgar-Painemal","doi":"10.1109/NAPS.2017.8107383","DOIUrl":null,"url":null,"abstract":"The understanding of power system characteristics and their impact on system behavior can lead to improved dynamic performances. Based on the Center of Inertia (COI) concept, this paper presents a practical study on the inertia distribution estimation, which can be used to both planning in long time scale and operation in short time scale, to meet with increasing renewable integration level in the future power system. Two indices are created to calculate the inertia distribution over the grid. Specifically, it is found that the proposed indices are highly related to the grid structure, and also they are affected by different parameters such as inertia constant, line parameters, terminal voltage set point of synchronous machines and models of exciters and governors. With these characteristics, the proposed indices have the potential to be applied on problems such as the placement of phasor measurement units or energy storage systems and generators coherency detection. Simulation results in a radial system, a meshed system and the IEEE 39-bus test system verify the characteristic of the proposed indices and show their potential applications in modern power systems.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The understanding of power system characteristics and their impact on system behavior can lead to improved dynamic performances. Based on the Center of Inertia (COI) concept, this paper presents a practical study on the inertia distribution estimation, which can be used to both planning in long time scale and operation in short time scale, to meet with increasing renewable integration level in the future power system. Two indices are created to calculate the inertia distribution over the grid. Specifically, it is found that the proposed indices are highly related to the grid structure, and also they are affected by different parameters such as inertia constant, line parameters, terminal voltage set point of synchronous machines and models of exciters and governors. With these characteristics, the proposed indices have the potential to be applied on problems such as the placement of phasor measurement units or energy storage systems and generators coherency detection. Simulation results in a radial system, a meshed system and the IEEE 39-bus test system verify the characteristic of the proposed indices and show their potential applications in modern power systems.
估计惯性分布以增强电力系统动力学
了解电力系统的特性及其对系统行为的影响可以改善系统的动态性能。本文基于惯性中心(COI)概念,对惯性分布估计进行了实际研究,该估计既可用于长时间规划,也可用于短时间运行,以满足未来电力系统不断提高的可再生能源并网水平。创建两个索引来计算网格上的惯性分布。具体而言,所提出的指标与电网结构高度相关,并受到同步电机惯性常数、线路参数、端电压设定点、励磁器和调速器型号等不同参数的影响。由于这些特点,所提出的指数有可能应用于相量测量单元或储能系统的放置和发电机相干检测等问题。在径向系统、网格系统和IEEE 39总线测试系统上的仿真结果验证了所提指标的特性,并显示了其在现代电力系统中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信