CHaPR: Efficient Inference of CNNs via Channel Pruning

Boyu Zhang, A. Davoodi, Y. Hu
{"title":"CHaPR: Efficient Inference of CNNs via Channel Pruning","authors":"Boyu Zhang, A. Davoodi, Y. Hu","doi":"10.1109/COINS49042.2020.9191636","DOIUrl":null,"url":null,"abstract":"To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.","PeriodicalId":350108,"journal":{"name":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS49042.2020.9191636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To deploy a CNN on resource-constrained edge platforms, channel pruning techniques promise a significant reduction of implementation costs including memory, computation, and energy consumption without special hardware or software libraries. This paper proposes CHaPR, a novel pruning technique to structurally prune the redundant channels in a trained deep Convolutional Neural Network. CHaPR utilizes a proposed subset selection problem formulation for pruning which it solves using pivoted QR factorization. CHaPR also includes an additional pruning technique for ResNet-like architectures which resolves the issue encountered by some existing channel pruning methods that not all the layers can be pruned. Experimental results on VGG-16 and ResNet-50 models show 4.29X and 2.84X reduction, respectively in computation cost while incurring 2.50% top-1 and 1.40% top-5 accuracy losses. Compared to many existing works, CHaPR performs better when considering an Overall Score metric which accounts for both computation and accuracy.
第三章:基于信道剪枝的cnn高效推理
为了在资源受限的边缘平台上部署CNN,通道修剪技术有望显著降低实现成本,包括内存、计算和能耗,而无需特殊的硬件或软件库。提出了一种新颖的CHaPR剪枝技术,对训练好的深度卷积神经网络中的冗余通道进行结构化剪枝。CHaPR利用提出的子集选择问题公式进行剪枝,它使用pivot QR分解来解决。CHaPR还为类似resnet的体系结构提供了一种额外的修剪技术,它解决了一些现有的通道修剪方法遇到的问题,即不是所有的层都可以修剪。在VGG-16和ResNet-50模型上的实验结果显示,计算成本分别降低了4.29X和2.84X,但top-1和top-5的精度损失分别为2.50%和1.40%。与许多现有作品相比,CHaPR在考虑计算和准确性的综合得分指标时表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信