UWB based dielectric material characterization using PCNN based ASIN framework

S. Sardar, A. Mishra
{"title":"UWB based dielectric material characterization using PCNN based ASIN framework","authors":"S. Sardar, A. Mishra","doi":"10.1109/ICAEE.2014.6838428","DOIUrl":null,"url":null,"abstract":"A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.","PeriodicalId":151739,"journal":{"name":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE.2014.6838428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A non-destructive method for shape invariant dielectric material characterization by estimating their relative dielectric constant using Pulse Coupled Neural Network (PCNN) based Application Specific Instrumentation (ASIN) Framework with Ultra Wide Band (UWB) sensors is discussed in this paper. The property of an electromagnetic wave changes due to the effects of relative dielectric constant & conductivity of a dielectric material, which changes reflection or transmission signal in terms of it's amplitude and spread. This property can be utilized to estimate the relative dielectric constant of a dielectric material. First, our implementation is compared to existing approaches to establish the superiority of the proposed method. In the next step, we established the geometric shape invariance property of our work i.e. this method can estimate the dielectric property of a material irrespective of its geometric shape. These approaches are validated using Finite Difference Time Domain (FDTD) simulation.
基于PCNN的ASIN框架的超宽带介质材料表征
本文讨论了一种基于脉冲耦合神经网络(PCNN)的应用专用仪器(ASIN)框架和超宽带(UWB)传感器估算介质相对介电常数的无损表征方法。由于介质材料的相对介电常数和电导率的影响,电磁波的性质发生了变化,从而改变了反射或传输信号的振幅和传播。这一性质可用于估计介电材料的相对介电常数。首先,将我们的实现与现有方法进行比较,以确定所提出方法的优越性。下一步,我们建立了我们工作的几何形状不变性,即这种方法可以估计材料的介电性质,而不考虑其几何形状。利用时域有限差分(FDTD)仿真对这些方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信