Self-Learning Low-Level Controllers

Dang Xuan Ba, J. Bae
{"title":"Self-Learning Low-Level Controllers","authors":"Dang Xuan Ba, J. Bae","doi":"10.5772/INTECHOPEN.96732","DOIUrl":null,"url":null,"abstract":"Humanoid robots are complicated systems both in hardware and software designs. Furthermore, the robots normally work in unstructured environments at which unpredictable disturbances could degrade control performances of whole systems. As a result, simple yet effective controllers are favorite employed in low-level layers. Gain-learning algorithms applied to conventional control frameworks, such as Proportional-Integral-Derivative, Sliding-mode, and Backstepping controllers, could be reasonable solutions. The adaptation ability integrated is adopted to automatically tune proper control gains subject to the optimal control criterion both in transient and steady-state phases. The learning rules could be realized by using analytical nonlinear functions. Their effectiveness and feasibility are carefully discussed by theoretical proofs and experimental discussion.","PeriodicalId":426431,"journal":{"name":"Collaborative Robots [Working Title]","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collaborative Robots [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humanoid robots are complicated systems both in hardware and software designs. Furthermore, the robots normally work in unstructured environments at which unpredictable disturbances could degrade control performances of whole systems. As a result, simple yet effective controllers are favorite employed in low-level layers. Gain-learning algorithms applied to conventional control frameworks, such as Proportional-Integral-Derivative, Sliding-mode, and Backstepping controllers, could be reasonable solutions. The adaptation ability integrated is adopted to automatically tune proper control gains subject to the optimal control criterion both in transient and steady-state phases. The learning rules could be realized by using analytical nonlinear functions. Their effectiveness and feasibility are carefully discussed by theoretical proofs and experimental discussion.
自学习低级控制器
人形机器人在硬件和软件设计上都是复杂的系统。此外,机器人通常在非结构化环境中工作,在这种环境中,不可预测的干扰可能会降低整个系统的控制性能。因此,简单而有效的控制器最喜欢在低层使用。将增益学习算法应用于传统的控制框架,如比例-积分-导数、滑模和反步控制器,可能是合理的解决方案。利用综合的自适应能力,根据最优控制准则,在暂态和稳态两阶段自动调整适当的控制增益。学习规则可以用解析非线性函数来实现。通过理论论证和实验讨论,详细论述了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信