{"title":"Self-Learning Low-Level Controllers","authors":"Dang Xuan Ba, J. Bae","doi":"10.5772/INTECHOPEN.96732","DOIUrl":null,"url":null,"abstract":"Humanoid robots are complicated systems both in hardware and software designs. Furthermore, the robots normally work in unstructured environments at which unpredictable disturbances could degrade control performances of whole systems. As a result, simple yet effective controllers are favorite employed in low-level layers. Gain-learning algorithms applied to conventional control frameworks, such as Proportional-Integral-Derivative, Sliding-mode, and Backstepping controllers, could be reasonable solutions. The adaptation ability integrated is adopted to automatically tune proper control gains subject to the optimal control criterion both in transient and steady-state phases. The learning rules could be realized by using analytical nonlinear functions. Their effectiveness and feasibility are carefully discussed by theoretical proofs and experimental discussion.","PeriodicalId":426431,"journal":{"name":"Collaborative Robots [Working Title]","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collaborative Robots [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Humanoid robots are complicated systems both in hardware and software designs. Furthermore, the robots normally work in unstructured environments at which unpredictable disturbances could degrade control performances of whole systems. As a result, simple yet effective controllers are favorite employed in low-level layers. Gain-learning algorithms applied to conventional control frameworks, such as Proportional-Integral-Derivative, Sliding-mode, and Backstepping controllers, could be reasonable solutions. The adaptation ability integrated is adopted to automatically tune proper control gains subject to the optimal control criterion both in transient and steady-state phases. The learning rules could be realized by using analytical nonlinear functions. Their effectiveness and feasibility are carefully discussed by theoretical proofs and experimental discussion.