Use of Literal Information in Multi-Target Data Association

I. Goodman
{"title":"Use of Literal Information in Multi-Target Data Association","authors":"I. Goodman","doi":"10.1109/ACC.1985.4171773","DOIUrl":null,"url":null,"abstract":"It has been shown that literal information can enhance geolocation information in the multi-target tracking and data association problem. This paper continues previous efforts in establishing a systematic approach to the combination of both types of information using membership functions based upon multiple-valued logic. Filters are established for literal and non-numerical attributes, somewhat analogous to the well-known Kalman filter. The major result, however, is an improvement and clarification of a previous theorem establishing asymptotic forms for the posterior possibility distribution of the unknown data association parameter as information granularity decreases and as inference rule structures become more definitive.","PeriodicalId":236856,"journal":{"name":"1985 American Control Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1985 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1985.4171773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It has been shown that literal information can enhance geolocation information in the multi-target tracking and data association problem. This paper continues previous efforts in establishing a systematic approach to the combination of both types of information using membership functions based upon multiple-valued logic. Filters are established for literal and non-numerical attributes, somewhat analogous to the well-known Kalman filter. The major result, however, is an improvement and clarification of a previous theorem establishing asymptotic forms for the posterior possibility distribution of the unknown data association parameter as information granularity decreases and as inference rule structures become more definitive.
多目标数据关联中文字信息的使用
研究表明,在多目标跟踪和数据关联问题中,文字信息可以增强地理位置信息。本文继续以前的努力,建立一个系统的方法来结合两种类型的信息使用基于多值逻辑的隶属函数。为文字和非数值属性建立了滤波器,有点类似于众所周知的卡尔曼滤波器。然而,主要结果是对先前定理的改进和澄清,该定理建立了未知数据关联参数的后验可能性分布的渐近形式,随着信息粒度的减少和推理规则结构变得更加确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信