Performance analysis for ad hoc cognitive radio networks using low complexity 2D Markov model

Tigang Jiang, Honggang Wang, Wei Wang
{"title":"Performance analysis for ad hoc cognitive radio networks using low complexity 2D Markov model","authors":"Tigang Jiang, Honggang Wang, Wei Wang","doi":"10.1109/ICNIDC.2016.7974536","DOIUrl":null,"url":null,"abstract":"In this paper, the 3-D Markov analytical model for cognitive radio networks of [1] are replaced by out proposed new 2-D Markov analytical model with considerable low complexity to evaluate the performance of Ad-Hoc Cognitive Radio Networks, and the theory mistakes of [1] are corrected. Compared with the existing 3-D Markov analytical model for cognitive radio networks, our approach has achieved the base performance with the low complexity. The numerical analysis and simulation show that the analytic model is accurate and compatible with the simulation results.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the 3-D Markov analytical model for cognitive radio networks of [1] are replaced by out proposed new 2-D Markov analytical model with considerable low complexity to evaluate the performance of Ad-Hoc Cognitive Radio Networks, and the theory mistakes of [1] are corrected. Compared with the existing 3-D Markov analytical model for cognitive radio networks, our approach has achieved the base performance with the low complexity. The numerical analysis and simulation show that the analytic model is accurate and compatible with the simulation results.
基于低复杂度二维马尔可夫模型的自组织认知无线网络性能分析
本文将[1]的认知无线网络的三维马尔可夫分析模型替换为我们提出的复杂度相当低的新的二维马尔可夫分析模型来评估Ad-Hoc认知无线网络的性能,并修正了[1]的理论错误。与现有的认知无线网络三维马尔可夫分析模型相比,该方法具有较低的复杂度和基本性能。数值分析和仿真结果表明,分析模型准确,与仿真结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信