A data mining method for refining groups in data using dynamic model based clustering

Tayfun Servi, H. Erol
{"title":"A data mining method for refining groups in data using dynamic model based clustering","authors":"Tayfun Servi, H. Erol","doi":"10.1109/INISTA.2013.6577645","DOIUrl":null,"url":null,"abstract":"A new data mining method is proposed for determining the number and structure of clusters, and refining groups in multivariate heterogeneous data set including groups, partly and completely overlapped group structures by using dynamic model based clustering. It is called dynamic model based clustering since the structure of model changes at each stage of refinement process dynamically. The proposed data mining method works without data reduction for high dimensional data in which some of variables including completely overlapped situations.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new data mining method is proposed for determining the number and structure of clusters, and refining groups in multivariate heterogeneous data set including groups, partly and completely overlapped group structures by using dynamic model based clustering. It is called dynamic model based clustering since the structure of model changes at each stage of refinement process dynamically. The proposed data mining method works without data reduction for high dimensional data in which some of variables including completely overlapped situations.
一种基于动态模型聚类的数据挖掘方法
提出了一种新的数据挖掘方法,利用基于动态模型的聚类方法,在包含群、部分重叠和完全重叠的群结构的多元异构数据集中,确定簇的数量和结构,提炼簇。它被称为动态结构以来,基于模型的聚类模型动态变化在每个阶段的优化过程。本文提出的数据挖掘方法可以在不需要数据约简的情况下对高维数据进行挖掘,其中一些变量包括完全重叠的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信