J. Kokkoniemi, J. Lehtomaki, Vitaly Petrov, D. Moltchanov, M. Juntti
{"title":"Frequency domain penetration loss in the terahertz band","authors":"J. Kokkoniemi, J. Lehtomaki, Vitaly Petrov, D. Moltchanov, M. Juntti","doi":"10.1109/GSMM.2016.7500309","DOIUrl":null,"url":null,"abstract":"Results on penetration loss measurements in the THz frequencies between 0.1-2 THz are reported. The measurements were conducted with time domain spectroscopy using the TeraView TeraPulse 4000 measurement equipment. We concentrate on the frequency-dependent penetration characteristics of various materials typical for indoor environments, providing both qualitative and quantitative assessment. The results show that the lower end of the THz band (<; 0.5 THz) suffers only modest loss in comparison to the higher frequencies. For the materials considered in this paper, plastic, glass and hard-board, the exact penetration properties are both frequency- and material-dependent. The incident angle to the material increases the penetration loss through increased path length inside the material. The exact values of these losses are provided.","PeriodicalId":156809,"journal":{"name":"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2016.7500309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Results on penetration loss measurements in the THz frequencies between 0.1-2 THz are reported. The measurements were conducted with time domain spectroscopy using the TeraView TeraPulse 4000 measurement equipment. We concentrate on the frequency-dependent penetration characteristics of various materials typical for indoor environments, providing both qualitative and quantitative assessment. The results show that the lower end of the THz band (<; 0.5 THz) suffers only modest loss in comparison to the higher frequencies. For the materials considered in this paper, plastic, glass and hard-board, the exact penetration properties are both frequency- and material-dependent. The incident angle to the material increases the penetration loss through increased path length inside the material. The exact values of these losses are provided.