Experimental measurement of thermal and electrical conductivities in warm dense state generated by pulsed-power discharge for efficient energy conversion of fast ignition
{"title":"Experimental measurement of thermal and electrical conductivities in warm dense state generated by pulsed-power discharge for efficient energy conversion of fast ignition","authors":"S. Kusano, K. Takahashi, T. Sasaki, T. Kikuchi","doi":"10.1109/PPPS34859.2019.9009861","DOIUrl":null,"url":null,"abstract":"We have measured the thermal and electrical conductivities of fusion material in warm dense matter (WDM) region. The method is an isochoric heating using pulsed-power discharge with a ruby capillary. The electrical conductivity is estimated from the shape of WDM and the measured voltage-current waveform. The thermal conductivity is estimated by the thermal conduction measured from the WDM temperature to the ruby capillary temperature using laser-induced fluorescence. The electrical conductivity of gold at the density of 0.01ps were 4×104 to 9×104S/m with the temperature ranging from 1.5×104 to 8×104 K. The thermal conductivity of tungsten at the density of 0.0 1ps was 30 to 40 W/m·K with the temperature ranging from 8.0×103 to 1.2×104 K.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have measured the thermal and electrical conductivities of fusion material in warm dense matter (WDM) region. The method is an isochoric heating using pulsed-power discharge with a ruby capillary. The electrical conductivity is estimated from the shape of WDM and the measured voltage-current waveform. The thermal conductivity is estimated by the thermal conduction measured from the WDM temperature to the ruby capillary temperature using laser-induced fluorescence. The electrical conductivity of gold at the density of 0.01ps were 4×104 to 9×104S/m with the temperature ranging from 1.5×104 to 8×104 K. The thermal conductivity of tungsten at the density of 0.0 1ps was 30 to 40 W/m·K with the temperature ranging from 8.0×103 to 1.2×104 K.