H. Kanoh, K. Hasegawa, M. Matsumoto, S. Nishihara, N. Kato
{"title":"Solving constraint satisfaction problems by a genetic algorithm adopting viral infection","authors":"H. Kanoh, K. Hasegawa, M. Matsumoto, S. Nishihara, N. Kato","doi":"10.1109/IJSIS.1996.565053","DOIUrl":null,"url":null,"abstract":"Several approximate algorithms have been reported to solve large constraint satisfaction problems (CSPs) in a practical time. While these papers discuss techniques to escape from local optima, the present paper describes a method that actively performs global search. The present method is to improve the rate of search of genetic algorithms using viral infection instead of mutation. The partial solutions of a CSP are considered to be viruses and a population of viruses is created as well as a population of candidate solutions. Search for a solution is conducted by crossover infection substitutes the gene of a virus for the locus decided by the virus. Experimental results using randomly generated CSPs prove that the proposed method is faster than a usual genetic algorithm in finding a solution when the constraint density of a CSP is low.","PeriodicalId":437491,"journal":{"name":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1996.565053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Several approximate algorithms have been reported to solve large constraint satisfaction problems (CSPs) in a practical time. While these papers discuss techniques to escape from local optima, the present paper describes a method that actively performs global search. The present method is to improve the rate of search of genetic algorithms using viral infection instead of mutation. The partial solutions of a CSP are considered to be viruses and a population of viruses is created as well as a population of candidate solutions. Search for a solution is conducted by crossover infection substitutes the gene of a virus for the locus decided by the virus. Experimental results using randomly generated CSPs prove that the proposed method is faster than a usual genetic algorithm in finding a solution when the constraint density of a CSP is low.