{"title":"Foam Assisted Gas Lift: The Impact of Different Surfactant Delivery Methods on Oil Well Performance","authors":"A. Martins, Marco Marino, M. Kerem, M. Guzmán","doi":"10.2118/195462-MS","DOIUrl":null,"url":null,"abstract":"\n This paper presents the first comparison between two different injection methods for foam assisted gas lift. Useful information for operators and technology developers are also provided concerning chemical selection, testing, and deployment of this hybrid artificial lift technology in the field.\n The trials have been conducted in a gas lifted oil well with severe slugging and water cut above 50% (selection criteria as per SPE-184217-MS). The surfactant was delivered through a dedicated capillary injection string during the first trial, and the effects of surfactant concentration and depth of injection were evaluated. During the second trial, the surfactant was injected into the gas lift stream at the surface. Different surfactants were utilised for both trials based on stability concerns and method of injection.\n Both trialled injection methods successfully stabilized the well flow, terminating severe slugging while increasing the drawdown and delivering an increase in gross production of circa 200%. These results, together with the downhole pressure data collected during the first trial, confirm that the surfactant starts foaming only at the depth where the lift gas enters the tubing. Injecting surfactant into the lift gas stream required higher concentrations than using a dedicated injection string, difference attributable to the slightly different chemistry, but even at those higher concentrations an anti-foamer injection was not required.\n Concerning the response time, the well responded in 30 to 60 minutes with capillary string injection, while 6 to 12 hours were required for injection into the lift gas stream. This suggests that the surfactant probably moves slowly down on the annulus walls as a liquid film rather than travelling in droplets dispersed in the gas phase. Based on the outcome of the two trials, it is concluded that the injection via the lift gas stream is as effective as capillary string injection, at a fraction of the initial costs, with lower maintenance requirements, while still allowing access to the well.","PeriodicalId":103248,"journal":{"name":"Day 4 Thu, June 06, 2019","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195462-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents the first comparison between two different injection methods for foam assisted gas lift. Useful information for operators and technology developers are also provided concerning chemical selection, testing, and deployment of this hybrid artificial lift technology in the field.
The trials have been conducted in a gas lifted oil well with severe slugging and water cut above 50% (selection criteria as per SPE-184217-MS). The surfactant was delivered through a dedicated capillary injection string during the first trial, and the effects of surfactant concentration and depth of injection were evaluated. During the second trial, the surfactant was injected into the gas lift stream at the surface. Different surfactants were utilised for both trials based on stability concerns and method of injection.
Both trialled injection methods successfully stabilized the well flow, terminating severe slugging while increasing the drawdown and delivering an increase in gross production of circa 200%. These results, together with the downhole pressure data collected during the first trial, confirm that the surfactant starts foaming only at the depth where the lift gas enters the tubing. Injecting surfactant into the lift gas stream required higher concentrations than using a dedicated injection string, difference attributable to the slightly different chemistry, but even at those higher concentrations an anti-foamer injection was not required.
Concerning the response time, the well responded in 30 to 60 minutes with capillary string injection, while 6 to 12 hours were required for injection into the lift gas stream. This suggests that the surfactant probably moves slowly down on the annulus walls as a liquid film rather than travelling in droplets dispersed in the gas phase. Based on the outcome of the two trials, it is concluded that the injection via the lift gas stream is as effective as capillary string injection, at a fraction of the initial costs, with lower maintenance requirements, while still allowing access to the well.