The Construction of the Real Numbers

Holmes
{"title":"The Construction of the Real Numbers","authors":"Holmes","doi":"10.1201/9781315275444-15","DOIUrl":null,"url":null,"abstract":"Commutative laws: Addition and multiplication are commutative operations. Associative laws: Addition and multiplication are associative operations. Distributive law: x(y + z) = xy + xz as usual. Identity for multiplication: 1 is the identity element for multiplication. Inverse law for multiplication: Every number a has a multiplicative inverse a. (recall that zero is not in our system). Definition: We define x < y as ∃z(x + z = y) then >, ≤, ≥ are defined using < as usual. Trichotomy 1: For any x and y, either x < y, y < x, or x = y. Trichotomy 2: For any x and y, either ¬x < y or ¬y < x.","PeriodicalId":371419,"journal":{"name":"Fundamentals of Abstract Analysis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Abstract Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315275444-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Commutative laws: Addition and multiplication are commutative operations. Associative laws: Addition and multiplication are associative operations. Distributive law: x(y + z) = xy + xz as usual. Identity for multiplication: 1 is the identity element for multiplication. Inverse law for multiplication: Every number a has a multiplicative inverse a. (recall that zero is not in our system). Definition: We define x < y as ∃z(x + z = y) then >, ≤, ≥ are defined using < as usual. Trichotomy 1: For any x and y, either x < y, y < x, or x = y. Trichotomy 2: For any x and y, either ¬x < y or ¬y < x.
实数的构造
交换律:加法和乘法都是交换运算。结合律:加法和乘法都是结合法运算。分配律:x(y + z) = xy + xz。乘法的单位:1是乘法的单位元素。乘法反比定律:每个数字a都有一个乘法反比a(请记住,零不在我们的系统中)。定义:我们将x < y定义为∃z(x + z = y),然后>,≤,≥通常使用<定义。三分法1:对于任意x和y, x < y, y < x或x = y。三分法2:对于任意x和y, x < y或y < x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信