{"title":"Combined semi-definite relaxation and sphere decoding method for multiple antennas systems","authors":"Z. Shao, S. Cheung, T. Yuk","doi":"10.1109/WSA.2011.5741919","DOIUrl":null,"url":null,"abstract":"In this paper, a new detection method which combines the semi-definite programming relaxation (SDR) with the sphere decoding (SD) is proposed for 256-QAM multiple-input multiple-output (MIMO) system. In this method, the SDR algorithms are engaged to obtain a primary result. Then, a hyper-sphere is constructed which is centered at the received signal and has its radius equals to the Euclidean distance between the primary result and the received signal. Finally, the SD searching strategy is employed to determine the final result which satisfies the principle of maximum likelihood. Simulation results show that the proposed method can offer optimum BLER performance as well as lower computational complexity than the conventional SD detectors.","PeriodicalId":307097,"journal":{"name":"2011 International ITG Workshop on Smart Antennas","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International ITG Workshop on Smart Antennas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2011.5741919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a new detection method which combines the semi-definite programming relaxation (SDR) with the sphere decoding (SD) is proposed for 256-QAM multiple-input multiple-output (MIMO) system. In this method, the SDR algorithms are engaged to obtain a primary result. Then, a hyper-sphere is constructed which is centered at the received signal and has its radius equals to the Euclidean distance between the primary result and the received signal. Finally, the SD searching strategy is employed to determine the final result which satisfies the principle of maximum likelihood. Simulation results show that the proposed method can offer optimum BLER performance as well as lower computational complexity than the conventional SD detectors.