Electric stress on the surface of conductors in an Extra High Voltage substation

D. Harimurugan, G. S. Punekar, N. Kishore
{"title":"Electric stress on the surface of conductors in an Extra High Voltage substation","authors":"D. Harimurugan, G. S. Punekar, N. Kishore","doi":"10.1109/NPSC.2018.8771766","DOIUrl":null,"url":null,"abstract":"In high voltage equipment and substations, the electric field distribution on the surface of the conductor is important from the point of designing the insulation systems. In outdoor substation, the atmospheric air acts as an insulation medium and the electric-fields (e-fields) on the surface of the conductors should not exceed the breakdown strength of air (2122 kV/m rms). Based on the analysis of surface e-fields of substation conductors, one can adjudge whether any redesign in terms of conductor effective radius and clearances are required. One such analysis of surface e-fields in a 765 kV substation in central India is carried out. Charge Simulation Method (CSM) is used as a numerical technique. The surface e-field plot on the substation conductors are reported. The highest e-fields are on the surface of transmission line conductors with 1504 kV/m. Thus, the design should work corona free.","PeriodicalId":185930,"journal":{"name":"2018 20th National Power Systems Conference (NPSC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th National Power Systems Conference (NPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NPSC.2018.8771766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In high voltage equipment and substations, the electric field distribution on the surface of the conductor is important from the point of designing the insulation systems. In outdoor substation, the atmospheric air acts as an insulation medium and the electric-fields (e-fields) on the surface of the conductors should not exceed the breakdown strength of air (2122 kV/m rms). Based on the analysis of surface e-fields of substation conductors, one can adjudge whether any redesign in terms of conductor effective radius and clearances are required. One such analysis of surface e-fields in a 765 kV substation in central India is carried out. Charge Simulation Method (CSM) is used as a numerical technique. The surface e-field plot on the substation conductors are reported. The highest e-fields are on the surface of transmission line conductors with 1504 kV/m. Thus, the design should work corona free.
超高压变电站导体表面的电应力
在高压设备和变电站中,从设计绝缘系统的角度来看,导体表面的电场分布是很重要的。在室外变电站中,大气作为绝缘介质,导线表面的电场(e-fields)不应超过空气击穿强度(2122 kV/m rms)。通过对变电站导线表面电场的分析,可以判断是否需要对导线有效半径和间隙进行重新设计。对印度中部一个765千伏变电站的地面电场进行了这样的分析。电荷模拟方法(CSM)是一种数值模拟技术。报道了变电站导线表面电场分布图。电场最高的是1504 kV/m的输电线路导体表面。因此,设计应该工作无电晕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信