Volumetric Human Reconstruction from a Single Depth Map

Ju-Mi Kang, J. Yoon, Minho Lee, Jewoo Kim, Min-Gyu Park
{"title":"Volumetric Human Reconstruction from a Single Depth Map","authors":"Ju-Mi Kang, J. Yoon, Minho Lee, Jewoo Kim, Min-Gyu Park","doi":"10.1109/ICAIIC51459.2021.9415231","DOIUrl":null,"url":null,"abstract":"We present an efficient approach to reconstruct a human body from a single depth map, captured by a commercial depth camera or a stereo depth sensor. The underlying idea is to predict the rear side depth map through the deep network because the rear side depth map tends to symmetric to the front depth map and the shape variation is lesser than the front. One the rear side depth map is predicted, we construct a signed distance volume and extract a human as the form of 3D meshes through the Marching Cubes method. We experimentally show that the proposed method can effectively predict the rear side depth map.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient approach to reconstruct a human body from a single depth map, captured by a commercial depth camera or a stereo depth sensor. The underlying idea is to predict the rear side depth map through the deep network because the rear side depth map tends to symmetric to the front depth map and the shape variation is lesser than the front. One the rear side depth map is predicted, we construct a signed distance volume and extract a human as the form of 3D meshes through the Marching Cubes method. We experimentally show that the proposed method can effectively predict the rear side depth map.
基于单一深度图的人体体积重建
我们提出了一种有效的方法,从商业深度相机或立体深度传感器捕获的单个深度图中重建人体。其基本思想是通过深度网络预测后侧面深度图,因为后侧面深度图与前侧面深度图趋于对称,形状变化小于前侧面。在预测后侧面深度图的基础上,构造一个带符号的距离体,并通过Marching Cubes方法提取人体作为三维网格的形式。实验结果表明,该方法可以有效地预测后侧面深度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信