Voice Control of a Robotic Arm for Hysterectomy and Its Optimal Pivot Selection

Mengjun Fang, Peng Li, Le Wei, Xuebin Hou, Xinguang Duan
{"title":"Voice Control of a Robotic Arm for Hysterectomy and Its Optimal Pivot Selection","authors":"Mengjun Fang, Peng Li, Le Wei, Xuebin Hou, Xinguang Duan","doi":"10.1109/RCAR47638.2019.9043990","DOIUrl":null,"url":null,"abstract":"This paper presents a method to recognize the voice command which is using for control a rbototic arm for hysterectomy. We extract MFCCs (Mel Frequency Cepstrum Coefficients) characteristic parameters as the original input, then put it into the CNNs (Convolutional Neural Networks) model after specific processing. After obtain the speech recognition model, we input the voice of command generate by a operator and then it would predicted a voice command and take corresponding action on robot. The plantform we used to verify our model is a 6-DOF manipulator. In order to promote maneuverability of this robot, we adopt a method to optimize the selection of Remote Center of Motion (RCM). Experiments show that this speech recognition meodel based on CNNs is fulfill the requirment of surgery and controling robot by its command is feasible.","PeriodicalId":314270,"journal":{"name":"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR47638.2019.9043990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method to recognize the voice command which is using for control a rbototic arm for hysterectomy. We extract MFCCs (Mel Frequency Cepstrum Coefficients) characteristic parameters as the original input, then put it into the CNNs (Convolutional Neural Networks) model after specific processing. After obtain the speech recognition model, we input the voice of command generate by a operator and then it would predicted a voice command and take corresponding action on robot. The plantform we used to verify our model is a 6-DOF manipulator. In order to promote maneuverability of this robot, we adopt a method to optimize the selection of Remote Center of Motion (RCM). Experiments show that this speech recognition meodel based on CNNs is fulfill the requirment of surgery and controling robot by its command is feasible.
子宫切除机械臂的语音控制及其最佳支点选择
提出了一种用于子宫切除机械臂控制的语音指令识别方法。我们提取出MFCCs (Mel Frequency倒谱系数)特征参数作为原始输入,经过特定处理后将其放入卷积神经网络(cnn)模型中。在获得语音识别模型后,我们输入操作员生成的命令语音,然后它会预测语音命令并对机器人采取相应的动作。我们用来验证模型的平台是一个六自由度机械手。为了提高该机器人的机动性,我们采用了一种方法来优化远程运动中心(RCM)的选择。实验表明,基于cnn的语音识别模型能够满足手术的要求,并且通过其指令控制机器人是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信