Low-rank matrix decomposition with a spectral-spatial regularization for change detection in hyperspectral imagery

Zhao Chen, Muhammad Sohail, Bin Wang
{"title":"Low-rank matrix decomposition with a spectral-spatial regularization for change detection in hyperspectral imagery","authors":"Zhao Chen, Muhammad Sohail, Bin Wang","doi":"10.1109/RSIP.2017.7958816","DOIUrl":null,"url":null,"abstract":"Change detection (CD) for multitemporal hyperspectral images (HSI) consists of two steps, change feature extraction and identification. This paper proposes a novel spectrally-spatially regularized low-rank and sparse decomposition model (LRSD_SS), to extract clean change features from corrupted spectral change vectors (SCV) of multitemporal HSI. It decomposes SCV into spatially smoothed low-rank data, sparse outliers and Gaussian noise. The experimental results validate the effectiveness and the efficiency of LRSD_SS.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Change detection (CD) for multitemporal hyperspectral images (HSI) consists of two steps, change feature extraction and identification. This paper proposes a novel spectrally-spatially regularized low-rank and sparse decomposition model (LRSD_SS), to extract clean change features from corrupted spectral change vectors (SCV) of multitemporal HSI. It decomposes SCV into spatially smoothed low-rank data, sparse outliers and Gaussian noise. The experimental results validate the effectiveness and the efficiency of LRSD_SS.
基于光谱空间正则化的低秩矩阵分解高光谱图像变化检测
多时相高光谱图像的变化检测包括变化特征提取和特征识别两个步骤。本文提出了一种新的光谱空间正则化低秩稀疏分解模型(LRSD_SS),从多时相HSI的损坏光谱变化向量(SCV)中提取干净的变化特征。它将SCV分解为空间平滑的低秩数据、稀疏离群值和高斯噪声。实验结果验证了LRSD_SS的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信