SGA Implementation Using Integer Arrays for Storage of Binary Strings

P. Kanchan, Rio G. L. D'Souza
{"title":"SGA Implementation Using Integer Arrays for Storage of Binary Strings","authors":"P. Kanchan, Rio G. L. D'Souza","doi":"10.1109/ICMLC.2010.62","DOIUrl":null,"url":null,"abstract":"The Simple Genetic Algorithm evaluates a group of binary strings on the basis of their fitness, performs crossover and mutation on them and tries to generate a group having maximum fitness. The usual method used for implementing the SGA is by using character arrays for storage of binary strings. But, this method has some disadvantages. The SGA implementation can be termed a success if the average fitness of the new generation is more than the initial average fitness. In this paper, we plan to implement the SGA using integer arrays for storage of binary strings. Then, we plan to compare the initial average fitness with the final average fitness so that the working of SGA can be verified. We have written the application such that varying population sizes can be given to check the correctness of the SGA algorithm.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Simple Genetic Algorithm evaluates a group of binary strings on the basis of their fitness, performs crossover and mutation on them and tries to generate a group having maximum fitness. The usual method used for implementing the SGA is by using character arrays for storage of binary strings. But, this method has some disadvantages. The SGA implementation can be termed a success if the average fitness of the new generation is more than the initial average fitness. In this paper, we plan to implement the SGA using integer arrays for storage of binary strings. Then, we plan to compare the initial average fitness with the final average fitness so that the working of SGA can be verified. We have written the application such that varying population sizes can be given to check the correctness of the SGA algorithm.
使用整数数组存储二进制字符串的SGA实现
简单遗传算法根据一组二进制字符串的适应度对其进行评估,并对其进行交叉和突变,以产生适应度最大的一组。实现SGA的常用方法是使用字符数组来存储二进制字符串。但是,这种方法有一些缺点。如果新一代的平均适应度大于初始平均适应度,则SGA实现可以称为成功。在本文中,我们计划使用整数数组来存储二进制字符串来实现SGA。然后,我们计划将初始平均适应度与最终平均适应度进行比较,以验证SGA的有效性。我们已经编写了应用程序,以便可以给出不同的人口大小来检查SGA算法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信