Face recognition using eyes, nostrils and mouth features

S. Paul, Mohammad Shorif Uddin, S. Bouakaz
{"title":"Face recognition using eyes, nostrils and mouth features","authors":"S. Paul, Mohammad Shorif Uddin, S. Bouakaz","doi":"10.1109/ICCITECHN.2014.6997378","DOIUrl":null,"url":null,"abstract":"This paper describes a face recognition algorithm that extracts the eyes, nostrils and mouth features from cumulative distribution function (CDF) by applying Otsu thresholding. The algorithm, which is inspired by the probability of white pixels of binary facial image, has been tested using the BioID frontal face large database in different illuminations, expressions and lighting conditions. Illumination and lighting variations are addressed using a selective equalization technique. The experimental results have confirmed an average recognition rate of 93.55%.","PeriodicalId":113626,"journal":{"name":"16th Int'l Conf. Computer and Information Technology","volume":"43 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Int'l Conf. Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2014.6997378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes a face recognition algorithm that extracts the eyes, nostrils and mouth features from cumulative distribution function (CDF) by applying Otsu thresholding. The algorithm, which is inspired by the probability of white pixels of binary facial image, has been tested using the BioID frontal face large database in different illuminations, expressions and lighting conditions. Illumination and lighting variations are addressed using a selective equalization technique. The experimental results have confirmed an average recognition rate of 93.55%.
利用眼睛、鼻孔和嘴巴特征进行人脸识别
本文描述了一种利用Otsu阈值从累积分布函数(CDF)中提取眼睛、鼻孔和嘴巴特征的人脸识别算法。该算法的灵感来自于二值人脸图像中白色像素的概率,并在不同光照、表情和光照条件下使用BioID正面大数据库进行了测试。照明和照明变化是解决使用选择性均衡技术。实验结果表明,平均识别率为93.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信