Research Mining using the Relationships among Authors, Topics and Papers

R. Ichise, Setsu Fujita, Taichi Muraki, Hideaki Takeda
{"title":"Research Mining using the Relationships among Authors, Topics and Papers","authors":"R. Ichise, Setsu Fujita, Taichi Muraki, Hideaki Takeda","doi":"10.1109/IV.2007.95","DOIUrl":null,"url":null,"abstract":"As information technology progress, we are able to obtain much information about the advanced research of others. As a result, researchers and research managers need to track the current research trends amid the information flood. In order to support these efforts to gather knowledge of current research, we propose a research trend mining method. The method utilizes an author-topic model for establishing the relationships between authors, topics, and papers by probabilities, and interactively visualizes the relationships using self-organizing maps. We implemented a research area mapping system and validated it with a case study. In addition, we conducted experiments to show the performance of our system. The experimental results indicate that this system can induce the appropriate relationships for finding research trends.","PeriodicalId":177429,"journal":{"name":"2007 11th International Conference Information Visualization (IV '07)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 11th International Conference Information Visualization (IV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2007.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As information technology progress, we are able to obtain much information about the advanced research of others. As a result, researchers and research managers need to track the current research trends amid the information flood. In order to support these efforts to gather knowledge of current research, we propose a research trend mining method. The method utilizes an author-topic model for establishing the relationships between authors, topics, and papers by probabilities, and interactively visualizes the relationships using self-organizing maps. We implemented a research area mapping system and validated it with a case study. In addition, we conducted experiments to show the performance of our system. The experimental results indicate that this system can induce the appropriate relationships for finding research trends.
利用作者、主题和论文之间的关系进行研究挖掘
随着信息技术的进步,我们能够获得许多关于他人先进研究的信息。因此,研究人员和研究管理者需要在信息洪流中跟踪当前的研究趋势。为了支持这些努力来收集当前研究的知识,我们提出了一种研究趋势挖掘方法。该方法利用作者-主题模型,通过概率建立作者、主题和论文之间的关系,并使用自组织图交互式地可视化这些关系。我们实施了一个研究区域地图系统,并通过案例研究对其进行了验证。此外,我们进行了实验来证明我们的系统的性能。实验结果表明,该系统能够诱导出合适的关系,从而发现研究趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信