R. Ichise, Setsu Fujita, Taichi Muraki, Hideaki Takeda
{"title":"Research Mining using the Relationships among Authors, Topics and Papers","authors":"R. Ichise, Setsu Fujita, Taichi Muraki, Hideaki Takeda","doi":"10.1109/IV.2007.95","DOIUrl":null,"url":null,"abstract":"As information technology progress, we are able to obtain much information about the advanced research of others. As a result, researchers and research managers need to track the current research trends amid the information flood. In order to support these efforts to gather knowledge of current research, we propose a research trend mining method. The method utilizes an author-topic model for establishing the relationships between authors, topics, and papers by probabilities, and interactively visualizes the relationships using self-organizing maps. We implemented a research area mapping system and validated it with a case study. In addition, we conducted experiments to show the performance of our system. The experimental results indicate that this system can induce the appropriate relationships for finding research trends.","PeriodicalId":177429,"journal":{"name":"2007 11th International Conference Information Visualization (IV '07)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 11th International Conference Information Visualization (IV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2007.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
As information technology progress, we are able to obtain much information about the advanced research of others. As a result, researchers and research managers need to track the current research trends amid the information flood. In order to support these efforts to gather knowledge of current research, we propose a research trend mining method. The method utilizes an author-topic model for establishing the relationships between authors, topics, and papers by probabilities, and interactively visualizes the relationships using self-organizing maps. We implemented a research area mapping system and validated it with a case study. In addition, we conducted experiments to show the performance of our system. The experimental results indicate that this system can induce the appropriate relationships for finding research trends.