Adaptive system anomaly prediction for large-scale hosting infrastructures

Yongmin Tan, Xiaohui Gu, Haixun Wang
{"title":"Adaptive system anomaly prediction for large-scale hosting infrastructures","authors":"Yongmin Tan, Xiaohui Gu, Haixun Wang","doi":"10.1145/1835698.1835741","DOIUrl":null,"url":null,"abstract":"Large-scale hosting infrastructures require automatic system anomaly management to achieve continuous system operation. In this paper, we present a novel adaptive runtime anomaly prediction system, called ALERT, to achieve robust hosting infrastructures. In contrast to traditional anomaly detection schemes, ALERT aims at raising advance anomaly alerts to achieve just-in-time anomaly prevention. We propose a novel context-aware anomaly prediction scheme to improve prediction accuracy in dynamic hosting infrastructures. We have implemented the ALERT system and deployed it on several production hosting infrastructures such as IBM System S stream processing cluster and PlanetLab. Our experiments show that ALERT can achieve high prediction accuracy for a range of system anomalies and impose low overhead to the hosting infrastructure.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Large-scale hosting infrastructures require automatic system anomaly management to achieve continuous system operation. In this paper, we present a novel adaptive runtime anomaly prediction system, called ALERT, to achieve robust hosting infrastructures. In contrast to traditional anomaly detection schemes, ALERT aims at raising advance anomaly alerts to achieve just-in-time anomaly prevention. We propose a novel context-aware anomaly prediction scheme to improve prediction accuracy in dynamic hosting infrastructures. We have implemented the ALERT system and deployed it on several production hosting infrastructures such as IBM System S stream processing cluster and PlanetLab. Our experiments show that ALERT can achieve high prediction accuracy for a range of system anomalies and impose low overhead to the hosting infrastructure.
大型托管基础设施的自适应系统异常预测
大型托管基础设施需要对系统异常进行自动化管理,以实现系统的连续运行。在本文中,我们提出了一种新的自适应运行时异常预测系统,称为ALERT,以实现健壮的托管基础设施。与传统的异常检测方案相比,ALERT旨在提前提出异常警报,以实现及时的异常预防。为了提高动态托管基础设施的预测精度,提出了一种新的上下文感知异常预测方案。我们已经实现了ALERT系统,并将其部署在几个生产托管基础设施上,如IBM system S流处理集群和PlanetLab。我们的实验表明,ALERT可以对一系列系统异常实现较高的预测精度,并且对托管基础设施施加较低的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信