Dependency-Aware Clustering for Variable-Grained Hardware-Software Partitioning

Deshya Wijesundera, Nadeeshan D. K. Dissanayake, Alok Prakash, T. Srikanthan, Damith Anhettigama
{"title":"Dependency-Aware Clustering for Variable-Grained Hardware-Software Partitioning","authors":"Deshya Wijesundera, Nadeeshan D. K. Dissanayake, Alok Prakash, T. Srikanthan, Damith Anhettigama","doi":"10.1109/ICFPT47387.2019.00080","DOIUrl":null,"url":null,"abstract":"The increasing adoption of FPGA-based systems, calls for efficient and effective partitioning of application components between the hardware and software of the FPGA platform. In this work, we propose a technique for application-specific data dependency-aware clustering that facilitates variable-grained hardware-software partitioning. The variable granularity makes the approach suitable for both large and small applications as well as stringent resource constraints and mitigates the impact of relaxed communication models in partitioning heuristics. Validated on applications from the CHStone benchmark suite the technique achieves 15% and 7% performance improvement compared to function and basic block level approaches respectively.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing adoption of FPGA-based systems, calls for efficient and effective partitioning of application components between the hardware and software of the FPGA platform. In this work, we propose a technique for application-specific data dependency-aware clustering that facilitates variable-grained hardware-software partitioning. The variable granularity makes the approach suitable for both large and small applications as well as stringent resource constraints and mitigates the impact of relaxed communication models in partitioning heuristics. Validated on applications from the CHStone benchmark suite the technique achieves 15% and 7% performance improvement compared to function and basic block level approaches respectively.
面向可变粒度软硬件分区的依赖感知聚类
基于FPGA的系统越来越多地采用,要求在FPGA平台的硬件和软件之间高效和有效地划分应用组件。在这项工作中,我们提出了一种特定于应用程序的数据依赖感知集群技术,该技术促进了可变粒度的硬件软件分区。可变粒度使得该方法既适用于大型应用程序,也适用于小型应用程序以及严格的资源约束,并减轻了分区启发式中宽松通信模型的影响。在CHStone基准测试套件的应用程序上进行了验证,与功能级和基本块级方法相比,该技术的性能分别提高了15%和7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信