{"title":"Reconstruction of compressively sampled images using a nonlinear Bayesian prior","authors":"S. Colonnese, M. Biagi, R. Cusani, G. Scarano","doi":"10.1109/CAMSAP.2017.8313077","DOIUrl":null,"url":null,"abstract":"This paper presents a procedure for reconstruction of spatially localized images from compressively sampled measurements making use of Bayesian priors. The contribution of this paper is twofold: firstly, we analytically derive the expected value of wavelet domain signal structures conditional to a suitably defined noisy estimate; secondly, we exploit such conditional expectation within a nonlinear estimation stage that is added to an iterative reconstruction algorithm at a very low computational cost. We present numerical results focusing on spatially localized images and assessing the accuracy of the resulting algorithm, which definitely outperforms state-of-the-art competitors in very ill-posed conditions characterized by a low number of measurements. This contribution highlights the strong analogy between compressive sampling reconstruction and blind deconvolution, and paves the way to further work on joint design of image deconvolution/reconstruction from compressively sampled measurements.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a procedure for reconstruction of spatially localized images from compressively sampled measurements making use of Bayesian priors. The contribution of this paper is twofold: firstly, we analytically derive the expected value of wavelet domain signal structures conditional to a suitably defined noisy estimate; secondly, we exploit such conditional expectation within a nonlinear estimation stage that is added to an iterative reconstruction algorithm at a very low computational cost. We present numerical results focusing on spatially localized images and assessing the accuracy of the resulting algorithm, which definitely outperforms state-of-the-art competitors in very ill-posed conditions characterized by a low number of measurements. This contribution highlights the strong analogy between compressive sampling reconstruction and blind deconvolution, and paves the way to further work on joint design of image deconvolution/reconstruction from compressively sampled measurements.