Definability and approximations in triangulated categories

Rosanna Laking, Jorge Vit'oria
{"title":"Definability and approximations in triangulated categories","authors":"Rosanna Laking, Jorge Vit'oria","doi":"10.2140/PJM.2020.306.557","DOIUrl":null,"url":null,"abstract":"We give criteria for subcategories of a compactly generated algebraic triangulated category to be precovering or preenveloping. These criteria are formulated in terms of closure conditions involving products, coproducts, directed homotopy colimits and further conditions involving the notion of purity. In particular, we provide sufficient closure conditions for a subcategory of a compactly generated algebraic triangulated category to be a torsion class. Finally we explore applications of the previous results to the theory of recollements.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2020.306.557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We give criteria for subcategories of a compactly generated algebraic triangulated category to be precovering or preenveloping. These criteria are formulated in terms of closure conditions involving products, coproducts, directed homotopy colimits and further conditions involving the notion of purity. In particular, we provide sufficient closure conditions for a subcategory of a compactly generated algebraic triangulated category to be a torsion class. Finally we explore applications of the previous results to the theory of recollements.
三角分类的可定义性和近似
给出了紧生成代数三角化范畴的子范畴是预覆盖或预包络的准则。这些准则是根据涉及乘积、副乘积、有向同伦极限和涉及纯度概念的进一步条件的闭包条件制定的。特别地,我们为紧生成的代数三角化范畴的子范畴是一个扭转类提供了足够的闭包条件。最后,探讨了前人的研究成果在聚回理论中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信