BIAS corrections in linear MMSE estimation with large filters

J. Serra, F. Rubio
{"title":"BIAS corrections in linear MMSE estimation with large filters","authors":"J. Serra, F. Rubio","doi":"10.5281/ZENODO.42214","DOIUrl":null,"url":null,"abstract":"We investigate optimal bias corrections in the problem of linear minimum mean square error (LMMSE) estimation of a scalar parameter linearly described by a set of Gaussian multidimensional observations. The problem of finding the optimal scaling of a class of LMMSE filter implementations based on the sample covariance matrix (SCM) is addressed. By applying recent results from random matrix theory, the scaling factor minimizing the mean square error (MSE) and depending on both the unknown covariance matrix and its sample estimator is firstly asymptotically analyzed in terms of key scenario parameters, and finally estimated using the SCM. As a main result, a universal scaling factor minimizing the estimator MSE is obtained which dramatically outperforms the conventional LMMSE filter implementation. A Bayesian setting assuming random unknown parameters with known mean and variance is considered in this paper, but exactly the same methodology applies to the classical estimation setup considering deterministic parameters.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We investigate optimal bias corrections in the problem of linear minimum mean square error (LMMSE) estimation of a scalar parameter linearly described by a set of Gaussian multidimensional observations. The problem of finding the optimal scaling of a class of LMMSE filter implementations based on the sample covariance matrix (SCM) is addressed. By applying recent results from random matrix theory, the scaling factor minimizing the mean square error (MSE) and depending on both the unknown covariance matrix and its sample estimator is firstly asymptotically analyzed in terms of key scenario parameters, and finally estimated using the SCM. As a main result, a universal scaling factor minimizing the estimator MSE is obtained which dramatically outperforms the conventional LMMSE filter implementation. A Bayesian setting assuming random unknown parameters with known mean and variance is considered in this paper, but exactly the same methodology applies to the classical estimation setup considering deterministic parameters.
大滤波器线性MMSE估计中的BIAS校正
我们研究了由一组高斯多维观测值线性描述的标量参数的线性最小均方误差(LMMSE)估计问题的最优偏差修正。研究了一类基于样本协方差矩阵(SCM)的LMMSE滤波器实现的最优缩放问题。利用随机矩阵理论的最新成果,首先根据关键场景参数渐近分析了均方误差(MSE)最小化的比例因子,并依赖于未知协方差矩阵及其样本估计量,最后使用SCM估计。结果表明,得到了一个通用的比例因子,使估计器的MSE最小,大大优于传统的LMMSE滤波器实现。本文考虑了一种假设随机未知参数且均值和方差已知的贝叶斯估计设置,但同样的方法也适用于考虑确定性参数的经典估计设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信