Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming

Ekrem Çetinkaya
{"title":"Machine Learning Based Video Coding Enhancements for HTTP Adaptive Streaming","authors":"Ekrem Çetinkaya","doi":"10.1145/3458305.3478468","DOIUrl":null,"url":null,"abstract":"Video traffic comprises the majority of today's Internet traffic, and HTTP Adaptive Streaming (HAS) is the preferred method to deliver video content over the Internet. Increasing demand for video and the improvements in the video display conditions over the years caused an increase in the video coding complexity. This increased complexity brought the need for more efficient video streaming and coding solutions. The latest standard video codecs can reduce the size of the videos by using more efficient tools with higher time-complexities. The plans for integrating machine learning into upcoming video codecs raised the interest in applied machine learning for video coding. In this doctoral study, we aim to propose applied machine learning methods to video coding, focusing on HTTP adaptive streaming. We present four primary research questions to target different challenges in video coding for HTTP adaptive streaming.","PeriodicalId":138399,"journal":{"name":"Proceedings of the 12th ACM Multimedia Systems Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458305.3478468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video traffic comprises the majority of today's Internet traffic, and HTTP Adaptive Streaming (HAS) is the preferred method to deliver video content over the Internet. Increasing demand for video and the improvements in the video display conditions over the years caused an increase in the video coding complexity. This increased complexity brought the need for more efficient video streaming and coding solutions. The latest standard video codecs can reduce the size of the videos by using more efficient tools with higher time-complexities. The plans for integrating machine learning into upcoming video codecs raised the interest in applied machine learning for video coding. In this doctoral study, we aim to propose applied machine learning methods to video coding, focusing on HTTP adaptive streaming. We present four primary research questions to target different challenges in video coding for HTTP adaptive streaming.
基于机器学习的HTTP自适应流视频编码增强
视频流量构成了当今互联网流量的大部分,HTTP自适应流(HAS)是在互联网上传递视频内容的首选方法。近年来视频需求的增加和视频显示条件的改善导致视频编码复杂度的增加。这种增加的复杂性带来了对更高效的视频流和编码解决方案的需求。最新的标准视频编解码器可以通过使用更高效的工具和更高的时间复杂度来减小视频的大小。将机器学习集成到即将推出的视频编解码器中的计划提高了人们对将机器学习应用于视频编码的兴趣。在本博士研究中,我们的目标是提出应用于视频编码的机器学习方法,重点是HTTP自适应流。针对HTTP自适应流媒体视频编码中的不同挑战,我们提出了四个主要的研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信