Stretching and folding diagnostics in solutions of the three-dimensional Euler and Navier-Stokes equations

J. Gibbon, Darryl D. Holm
{"title":"Stretching and folding diagnostics in solutions of the three-dimensional Euler and Navier-Stokes equations","authors":"J. Gibbon, Darryl D. Holm","doi":"10.1017/CBO9781139235792.010","DOIUrl":null,"url":null,"abstract":"Two possible diagnostics of stretching and folding (S&F) in fluid flows are discussed, based on the dynamics of the gradient of potential vorticity ($q = \\bom\\cdot\\nabla\\theta$) associated with solutions of the three-dimensional Euler and Navier-Stokes equations. The vector $\\bdB = \\nabla q \\times \\nabla\\theta$ satisfies the same type of stretching and folding equation as that for the vorticity field $\\bom $ in the incompressible Euler equations (Gibbon & Holm, 2010). The quantity $\\theta$ may be chosen as the potential temperature for the stratified, rotating Euler/Navier-Stokes equations, or it may play the role of a seeded passive scalar for the Euler equations alone. The first discussion of these S&F-flow diagnostics concerns a numerical test for Euler codes and also includes a connection with the two-dimensional surface quasi-geostrophic equations. The second S&F-flow diagnostic concerns the evolution of the Lamb vector $\\bsD = \\bom\\times\\bu$, which is the nonlinearity for Euler's equations apart from the pressure. The curl of the Lamb vector ($\\boldsymbol{\\varpi} := \\bsD$) turns out to possess similar stretching and folding properties to that of the $\\bdB$-vector.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781139235792.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Two possible diagnostics of stretching and folding (S&F) in fluid flows are discussed, based on the dynamics of the gradient of potential vorticity ($q = \bom\cdot\nabla\theta$) associated with solutions of the three-dimensional Euler and Navier-Stokes equations. The vector $\bdB = \nabla q \times \nabla\theta$ satisfies the same type of stretching and folding equation as that for the vorticity field $\bom $ in the incompressible Euler equations (Gibbon & Holm, 2010). The quantity $\theta$ may be chosen as the potential temperature for the stratified, rotating Euler/Navier-Stokes equations, or it may play the role of a seeded passive scalar for the Euler equations alone. The first discussion of these S&F-flow diagnostics concerns a numerical test for Euler codes and also includes a connection with the two-dimensional surface quasi-geostrophic equations. The second S&F-flow diagnostic concerns the evolution of the Lamb vector $\bsD = \bom\times\bu$, which is the nonlinearity for Euler's equations apart from the pressure. The curl of the Lamb vector ($\boldsymbol{\varpi} := \bsD$) turns out to possess similar stretching and folding properties to that of the $\bdB$-vector.
三维Euler和Navier-Stokes方程解中的拉伸和折叠诊断
基于位涡梯度($q = \bom\cdot\nabla\theta$)与三维欧拉方程和纳维-斯托克斯方程解相关的动力学,讨论了流体中拉伸和折叠(S&F)的两种可能诊断。向量$\bdB = \nabla q \times \nabla\theta$与不可压缩欧拉方程中的涡度场$\bom $满足相同类型的拉伸和折叠方程(Gibbon & Holm, 2010)。对于分层旋转的欧拉/纳维-斯托克斯方程,可以选择量$\theta$作为势温,也可以单独作为欧拉方程的种子被动标量。这些s&f流诊断的第一个讨论涉及欧拉码的数值测试,还包括与二维表面准地转方程的联系。第二个s&f流诊断涉及Lamb向量$\bsD = \bom\times\bu$的演化,这是欧拉方程除压力外的非线性。Lamb向量($\boldsymbol{\varpi} := \bsD$)的旋度与$\bdB$ -向量具有相似的拉伸和折叠特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信