Statistical Method for Single-Diode Model Parameters Extraction of a Photovoltaic Module

Aldo J. Rivas-Vázquez, R. Loera-Palomo, C. Álvarez-Macías, Michel Rivero, F. Sellschopp-Sánchez
{"title":"Statistical Method for Single-Diode Model Parameters Extraction of a Photovoltaic Module","authors":"Aldo J. Rivas-Vázquez, R. Loera-Palomo, C. Álvarez-Macías, Michel Rivero, F. Sellschopp-Sánchez","doi":"10.1109/ROPEC50909.2020.9258754","DOIUrl":null,"url":null,"abstract":"In this work a modeling method for photovoltaic (PV) modules based on statistical analysis is presented. In this sense, the work deals with the determination of the parameters of the non-linear I-V equation, represented by the single-diode model. The parameters estimation of the PV model starts with experimental tests on PV panels under different irradiance and temperature conditions. A database is built with the parameters extracted from the family of experimental curves, where mathematical expressions, through linear regression analysis, are obtained to determine electrical variables of interest, such as: $I_{sc},\\ V_{oc},\\ I_{m},\\ V_{m}$ and $P_{m}$ which are dependent of irradiance $\\text{and}/\\text{or}$ operating temperature. The parameters of the non-linear I-V equation given by the resistances $R_{sh},\\ R_{s}$ and the ideality factor $n$, the analysis demonstrate that average values are representative; while the light-generated and diode-saturation currents depend on the incident irradiance. The capacity of the models was validated through the analysis of different statistical criteria, such as: the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and the coefficient of determination ($R^{2}$). The results were accepted for applications where a high precision is not necessary, or for modeling and/or forecasting purposes.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work a modeling method for photovoltaic (PV) modules based on statistical analysis is presented. In this sense, the work deals with the determination of the parameters of the non-linear I-V equation, represented by the single-diode model. The parameters estimation of the PV model starts with experimental tests on PV panels under different irradiance and temperature conditions. A database is built with the parameters extracted from the family of experimental curves, where mathematical expressions, through linear regression analysis, are obtained to determine electrical variables of interest, such as: $I_{sc},\ V_{oc},\ I_{m},\ V_{m}$ and $P_{m}$ which are dependent of irradiance $\text{and}/\text{or}$ operating temperature. The parameters of the non-linear I-V equation given by the resistances $R_{sh},\ R_{s}$ and the ideality factor $n$, the analysis demonstrate that average values are representative; while the light-generated and diode-saturation currents depend on the incident irradiance. The capacity of the models was validated through the analysis of different statistical criteria, such as: the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and the coefficient of determination ($R^{2}$). The results were accepted for applications where a high precision is not necessary, or for modeling and/or forecasting purposes.
光伏组件单二极管模型参数提取的统计方法
本文提出了一种基于统计分析的光伏组件建模方法。从这个意义上说,工作涉及的是非线性I-V方程参数的确定,由单二极管模型表示。PV模型的参数估计首先要在不同辐照度和温度条件下对PV板进行实验测试。利用从实验曲线族中提取的参数建立了数据库,通过线性回归分析,得到了与辐照度$\text{和}/\text{或}$工作温度有关的$I_{sc}、\ V_{oc}、\ I_{m}、\ V_{m}$和$P_{m}$等感兴趣的电变量的数学表达式。非线性I-V方程的参数由电阻$R_{sh}、$R_{s}$和理想因子$n$给出,分析表明平均值具有代表性;而产生的光和二极管饱和电流取决于入射辐照度。通过分析不同的统计标准,如:均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R ^{2}$),验证了模型的能力。结果可用于不需要高精度的应用,或用于建模和/或预测目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信