{"title":"On the use of skin texture features for gender recognition: An experimental evaluation","authors":"F. Bianconi, F. Smeraldi, M. Abdollahyan, P. Xiao","doi":"10.1109/IPTA.2016.7821018","DOIUrl":null,"url":null,"abstract":"Skin appearance is almost universally the object of gender-related expectations and stereotypes. This not with standing, remarkably little work has been done on establishing quantitatively whether skin texture can be used for gender discrimination. We present a detailed analysis of the skin texture of 43 subjects based on two complementary imaging modalities afforded by a visible-light dermoscope and the recently developed Epsilon sensor for capacitive imaging. We consider an array of established texture features in combination with two supervised classification techniques (1-NN and SVM) and a state-of-the-art unsupervised approach (t-SNE). A statistical analysis of the results suggests that skin microtexture carries very little information on gender.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Skin appearance is almost universally the object of gender-related expectations and stereotypes. This not with standing, remarkably little work has been done on establishing quantitatively whether skin texture can be used for gender discrimination. We present a detailed analysis of the skin texture of 43 subjects based on two complementary imaging modalities afforded by a visible-light dermoscope and the recently developed Epsilon sensor for capacitive imaging. We consider an array of established texture features in combination with two supervised classification techniques (1-NN and SVM) and a state-of-the-art unsupervised approach (t-SNE). A statistical analysis of the results suggests that skin microtexture carries very little information on gender.