GenAMap: Visualization strategies for structured association mapping

Ross E. Curtis, Peter Kinnaird, E. Xing
{"title":"GenAMap: Visualization strategies for structured association mapping","authors":"Ross E. Curtis, Peter Kinnaird, E. Xing","doi":"10.1109/BioVis.2011.6094052","DOIUrl":null,"url":null,"abstract":"Association mapping studies promise to link DNA mutations to gene expression data, possibly leading to innovative treatments for diseases. One challenge in large-scale association mapping studies is exploring the results of the computational analysis to find relevant and interesting associations. Although many association mapping studies find associations from a genome-wide collection of genomic data to hundreds or thousands of traits, current visualization software only allow these associations to be explored one trait at a time. The inability to explore the association of a genomic location to multiple traits hides the inherent interaction between traits in the analysis. Additionally, researchers must rely on collections of in-house scripts and multiple tools to perform an analysis, adding time and effort to find interesting associations. In this paper, we present a novel visual analytics system called GenAMap. GenAMap replaces the time-consuming analysis of large-scale association mapping studies with exploratory visualization tools that give geneticists an overview of the data and lead them to relevant information. We present the results of a preliminary evaluation that validated our basic approach.","PeriodicalId":354473,"journal":{"name":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Biological Data Visualization (BioVis).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioVis.2011.6094052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Association mapping studies promise to link DNA mutations to gene expression data, possibly leading to innovative treatments for diseases. One challenge in large-scale association mapping studies is exploring the results of the computational analysis to find relevant and interesting associations. Although many association mapping studies find associations from a genome-wide collection of genomic data to hundreds or thousands of traits, current visualization software only allow these associations to be explored one trait at a time. The inability to explore the association of a genomic location to multiple traits hides the inherent interaction between traits in the analysis. Additionally, researchers must rely on collections of in-house scripts and multiple tools to perform an analysis, adding time and effort to find interesting associations. In this paper, we present a novel visual analytics system called GenAMap. GenAMap replaces the time-consuming analysis of large-scale association mapping studies with exploratory visualization tools that give geneticists an overview of the data and lead them to relevant information. We present the results of a preliminary evaluation that validated our basic approach.
GenAMap:结构化关联映射的可视化策略
关联图谱研究有望将DNA突变与基因表达数据联系起来,可能导致疾病的创新治疗。大规模关联映射研究的一个挑战是探索计算分析的结果,以发现相关的和有趣的关联。尽管许多关联映射研究发现了从全基因组数据收集到数百或数千个特征的关联,但目前的可视化软件一次只允许探索这些关联中的一个特征。无法探索基因组位置与多个性状之间的关联,隐藏了分析中性状之间固有的相互作用。此外,研究人员必须依靠内部脚本的集合和多种工具来执行分析,增加了时间和精力来寻找有趣的关联。在本文中,我们提出了一个新的可视化分析系统GenAMap。GenAMap用探索性可视化工具取代了耗时的大规模关联图谱研究分析,为遗传学家提供了数据概述并引导他们获得相关信息。我们提出的初步评估结果验证了我们的基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信