BLINKS

Hao He, Haixun Wang, Jun Yang, Philip S. Yu
{"title":"BLINKS","authors":"Hao He, Haixun Wang, Jun Yang, Philip S. Yu","doi":"10.1145/1247480.1247516","DOIUrl":null,"url":null,"abstract":"Query processing over graph-structured data is enjoying a growing number of applications. A top-k keyword search query on a graph finds the top k answers according to some ranking criteria, where each answer is a substructure of the graph containing all query keywords. Current techniques for supporting such queries on general graphs suffer from several drawbacks, e.g., poor worst-case performance, not taking full advantage of indexes, and high memory requirements. To address these problems, we propose BLINKS, a bi-level indexing and query processing scheme for top-k keyword search on graphs. BLINKS follows a search strategy with provable performance bounds, while additionally exploiting a bi-level index for pruning and accelerating the search. To reduce the index space, BLINKS partitions a data graph into blocks: The bi-level index stores summary information at the block level to initiate and guide search among blocks, and more detailed information for each block to accelerate search within blocks. Our experiments show that BLINKS offers orders-of-magnitude performance improvement over existing approaches.","PeriodicalId":438226,"journal":{"name":"Proceedings of the 2007 ACM SIGMOD international conference on Management of data - SIGMOD '07","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM SIGMOD international conference on Management of data - SIGMOD '07","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1247480.1247516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Query processing over graph-structured data is enjoying a growing number of applications. A top-k keyword search query on a graph finds the top k answers according to some ranking criteria, where each answer is a substructure of the graph containing all query keywords. Current techniques for supporting such queries on general graphs suffer from several drawbacks, e.g., poor worst-case performance, not taking full advantage of indexes, and high memory requirements. To address these problems, we propose BLINKS, a bi-level indexing and query processing scheme for top-k keyword search on graphs. BLINKS follows a search strategy with provable performance bounds, while additionally exploiting a bi-level index for pruning and accelerating the search. To reduce the index space, BLINKS partitions a data graph into blocks: The bi-level index stores summary information at the block level to initiate and guide search among blocks, and more detailed information for each block to accelerate search within blocks. Our experiments show that BLINKS offers orders-of-magnitude performance improvement over existing approaches.
眨眼
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信