{"title":"Efficient 3D data compression through parameterization of free-form surface patches","authors":"M. Rodrigues, A. Robinson, Abdulsslam Osman","doi":"10.5220/0003033801300135","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for 3D data compression based on parameterization of surface patches. The technique is applied to data that can be defined as single valued functions; this is the case for 3D patches obtained using standard 3D scanners. The method defines a number of mesh cutting planes and the intersection of planes on the mesh defines a set of sampling points. These points contain an explicit structure that allows us to define parametrically both x and y coordinates. The z values are interpolated using high degree polynomials and results show that compressions over 99% are achieved while preserving the quality of the mesh.","PeriodicalId":408116,"journal":{"name":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003033801300135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper presents a new method for 3D data compression based on parameterization of surface patches. The technique is applied to data that can be defined as single valued functions; this is the case for 3D patches obtained using standard 3D scanners. The method defines a number of mesh cutting planes and the intersection of planes on the mesh defines a set of sampling points. These points contain an explicit structure that allows us to define parametrically both x and y coordinates. The z values are interpolated using high degree polynomials and results show that compressions over 99% are achieved while preserving the quality of the mesh.