Sub-8-Bit Quantization for On-Device Speech Recognition: A Regularization-Free Approach

Kai Zhen, Martin H. Radfar, H. Nguyen, Grant P. Strimel, Nathan Susanj, A. Mouchtaris
{"title":"Sub-8-Bit Quantization for On-Device Speech Recognition: A Regularization-Free Approach","authors":"Kai Zhen, Martin H. Radfar, H. Nguyen, Grant P. Strimel, Nathan Susanj, A. Mouchtaris","doi":"10.1109/SLT54892.2023.10022821","DOIUrl":null,"url":null,"abstract":"For on-device automatic speech recognition (ASR), quantization aware training (QAT) is ubiquitous to achieve the trade-off between model predictive performance and efficiency. Among existing QAT methods, one major drawback is that the quantization centroids have to be predetermined and fixed. To overcome this limitation, we introduce a regularization-free, “soft-to-hard” compression mechanism with self-adjustable centroids in a $\\mu$ -Law constrained space, resulting in a simpler yet more versatile quantization scheme, called General Quantizer (GQ). We apply GQ to ASR tasks using Recurrent Neural Network Transducer (RNN-T) and Conformer architectures on both LibriSpeech and de-identified far-field datasets. Without accuracy degradation, GQ can compress both RNN-T and Conformer into sub-8-bit, and for some RNN-T layers, to 1-bit for fast and accurate inference. We observe a 30.73% memory footprint saving and 31.75% user-perceived latency reduction compared to 8-bit QAT via physical device benchmarking.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"62 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For on-device automatic speech recognition (ASR), quantization aware training (QAT) is ubiquitous to achieve the trade-off between model predictive performance and efficiency. Among existing QAT methods, one major drawback is that the quantization centroids have to be predetermined and fixed. To overcome this limitation, we introduce a regularization-free, “soft-to-hard” compression mechanism with self-adjustable centroids in a $\mu$ -Law constrained space, resulting in a simpler yet more versatile quantization scheme, called General Quantizer (GQ). We apply GQ to ASR tasks using Recurrent Neural Network Transducer (RNN-T) and Conformer architectures on both LibriSpeech and de-identified far-field datasets. Without accuracy degradation, GQ can compress both RNN-T and Conformer into sub-8-bit, and for some RNN-T layers, to 1-bit for fast and accurate inference. We observe a 30.73% memory footprint saving and 31.75% user-perceived latency reduction compared to 8-bit QAT via physical device benchmarking.
设备上语音识别的8位以下量化:一种无正则化的方法
在设备上自动语音识别(ASR)中,量化感知训练(QAT)是实现模型预测性能和效率之间平衡的普遍方法。在现有的QAT方法中,一个主要的缺点是量化质心必须预先确定和固定。为了克服这一限制,我们引入了一种无正则化的“软到硬”压缩机制,该机制具有在$\mu$ -Law约束空间中的自调节质心,从而产生一种更简单但更通用的量化方案,称为通用量化器(GQ)。我们在librisspeech和去识别远场数据集上使用递归神经网络传感器(RNN-T)和Conformer架构将GQ应用于ASR任务。在不降低精度的情况下,GQ可以将RNN-T和Conformer压缩到亚8位,对于某些RNN-T层,可以压缩到1位,以实现快速准确的推理。通过物理设备基准测试,我们观察到与8位QAT相比,节省了30.73%的内存占用,减少了31.75%的用户感知延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信