CoLearn

Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu, R. Mortier, Shiqiang Wang, P. Bellavista, J. Crowcroft
{"title":"CoLearn","authors":"Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu, R. Mortier, Shiqiang Wang, P. Bellavista, J. Crowcroft","doi":"10.1145/3378679.3394528","DOIUrl":null,"url":null,"abstract":"Edge computing and Federated Learning (FL) can work in tandem to address issues related to privacy and collaborative distributed learning in untrusted IoT environments. However, deployment of FL in resource-constrained IoT devices faces challenges including asynchronous participation of such devices in training, and the need to prevent malicious devices from participating. To address these challenges we present CoLearn, which build on the open-source Manufacturer Usage Description (MUD) implementation osMUD and the FL framework PySyft. We deploy CoLearn on resource-constrained devices in a lab environment to demonstrate (i) an asynchronous participation mechanism for IoT devices in machine learning model training using a publish/subscribe architecture, (ii) a mechanism for reducing the attack surface in FL architecture by allowing only IoT MUD-compliant devices to participate in the training phases, and (iii) a trade-off between communication bandwidth usage, training time and device temperature (thermal fatigue).","PeriodicalId":268360,"journal":{"name":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378679.3394528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Edge computing and Federated Learning (FL) can work in tandem to address issues related to privacy and collaborative distributed learning in untrusted IoT environments. However, deployment of FL in resource-constrained IoT devices faces challenges including asynchronous participation of such devices in training, and the need to prevent malicious devices from participating. To address these challenges we present CoLearn, which build on the open-source Manufacturer Usage Description (MUD) implementation osMUD and the FL framework PySyft. We deploy CoLearn on resource-constrained devices in a lab environment to demonstrate (i) an asynchronous participation mechanism for IoT devices in machine learning model training using a publish/subscribe architecture, (ii) a mechanism for reducing the attack surface in FL architecture by allowing only IoT MUD-compliant devices to participate in the training phases, and (iii) a trade-off between communication bandwidth usage, training time and device temperature (thermal fatigue).
CoLearn
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信