{"title":"I Need to Step Back from It! Modeling Backward Movement from Multimodal Sensors in Virtual Reality","authors":"Seungwon Paik, Kyungsik Han","doi":"10.1145/3415264.3425469","DOIUrl":null,"url":null,"abstract":"A user’s movement is one of the most important properties that pertain to user experience in a virtual reality (VR) environment. However, little research has focused on examining backward movements. Inappropriate support of such movements could lead to dizziness and disengagement in a VR program. In this paper, we investigate the possibility of detecting forward and backward movements from three different positions of the body (i.e., head, waist, and feet) by conducting a user study. Our machine-learning model yields the detection of forward and backward movements up to 93% accuracy and shows slightly varying performances by the participants. We detail the analysis of our model through the lenses of body position, integration, and sampling rate.","PeriodicalId":372541,"journal":{"name":"SIGGRAPH Asia 2020 Posters","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2020 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415264.3425469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A user’s movement is one of the most important properties that pertain to user experience in a virtual reality (VR) environment. However, little research has focused on examining backward movements. Inappropriate support of such movements could lead to dizziness and disengagement in a VR program. In this paper, we investigate the possibility of detecting forward and backward movements from three different positions of the body (i.e., head, waist, and feet) by conducting a user study. Our machine-learning model yields the detection of forward and backward movements up to 93% accuracy and shows slightly varying performances by the participants. We detail the analysis of our model through the lenses of body position, integration, and sampling rate.