A Hybrid CI-Based Knowledge Discovery System on Microarray Gene Expression Data

Yuchun Tang, Yuanchen He, Yanqing Zhang, Zhen Huang, Xiaohua Hu, Rajshekhar Sunderraman
{"title":"A Hybrid CI-Based Knowledge Discovery System on Microarray Gene Expression Data","authors":"Yuchun Tang, Yuanchen He, Yanqing Zhang, Zhen Huang, Xiaohua Hu, Rajshekhar Sunderraman","doi":"10.1109/CIBCB.2005.1594894","DOIUrl":null,"url":null,"abstract":"A hybrid Computational Intelligence-based Knowledge Discovery system is presented in this paper. The system works in three phases. In phase 1, many feature selection algorithms are utilized to select informative cancer-related genes from microarray expression data. Compared with other algorithms, our GSVM-RFE algorithm demonstrates superior performance on the microarray expression dataset for AML/ALL classification. Specifically, a compact “ perfect” gene subset is reported. In phase 2, many intelligent computation models are implemented to extract useful knowledge about functions of selected genes to regulate the cancer being studied. Knowledge can ease further biomedical study because of reliable information sources, high prediction accuracy, and easiness to interpret. Currently, knowledge is represented in two formats, Web-based and Rule-based. As a future work, we plan to implement knowledge fusion algorithms in phase 3 to synthesize and consolidate hybrid knowledge into a single knowledge base to provide effective and efficient decision support for cancer diagnosis and drug discovery.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A hybrid Computational Intelligence-based Knowledge Discovery system is presented in this paper. The system works in three phases. In phase 1, many feature selection algorithms are utilized to select informative cancer-related genes from microarray expression data. Compared with other algorithms, our GSVM-RFE algorithm demonstrates superior performance on the microarray expression dataset for AML/ALL classification. Specifically, a compact “ perfect” gene subset is reported. In phase 2, many intelligent computation models are implemented to extract useful knowledge about functions of selected genes to regulate the cancer being studied. Knowledge can ease further biomedical study because of reliable information sources, high prediction accuracy, and easiness to interpret. Currently, knowledge is represented in two formats, Web-based and Rule-based. As a future work, we plan to implement knowledge fusion algorithms in phase 3 to synthesize and consolidate hybrid knowledge into a single knowledge base to provide effective and efficient decision support for cancer diagnosis and drug discovery.
基于混合ci的微阵列基因表达数据知识发现系统
提出了一种基于混合计算智能的知识发现系统。该系统分为三个阶段。在第一阶段,许多特征选择算法被用来从微阵列表达数据中选择信息丰富的癌症相关基因。与其他算法相比,我们的GSVM-RFE算法在AML/ALL微阵列表达数据集上表现出优异的分类性能。具体来说,一个紧凑的“完美”基因子集被报道。在第二阶段,实现了许多智能计算模型,以提取有关所选基因功能的有用知识,以调节所研究的癌症。由于信息来源可靠、预测准确性高、易于解释,知识可以简化进一步的生物医学研究。目前,知识以两种格式表示:基于web的和基于规则的。作为未来的工作,我们计划在第三阶段实现知识融合算法,将混合知识综合并整合成一个单一的知识库,为癌症诊断和药物发现提供有效和高效的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信