{"title":"Improved Side-Channel Resistance by Dynamic Fault-Injection Countermeasures","authors":"Jan Richter-Brockmann, T. Güneysu","doi":"10.1109/ASAP49362.2020.00029","DOIUrl":null,"url":null,"abstract":"Side-channel analysis and fault-injection attacks are known as serious threats to cryptographic hardware implementations and the combined protection against both is currently an open line of research. A promising countermeasure with considerable implementation overhead appears to be a mix of first-order secure Threshold Implementations and linear Error-Correcting Codes.In this paper we employ for the first time the inherent structure of non-systematic codes as fault countermeasure which dynamically mutates the applied generator matrices to achieve a higher-order side-channel and fault-protected design. As a case study, we apply our scheme to the PRESENT block cipher that do not show any higher-order side-channel leakage after measuring 150 million power traces.","PeriodicalId":375691,"journal":{"name":"2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP49362.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Side-channel analysis and fault-injection attacks are known as serious threats to cryptographic hardware implementations and the combined protection against both is currently an open line of research. A promising countermeasure with considerable implementation overhead appears to be a mix of first-order secure Threshold Implementations and linear Error-Correcting Codes.In this paper we employ for the first time the inherent structure of non-systematic codes as fault countermeasure which dynamically mutates the applied generator matrices to achieve a higher-order side-channel and fault-protected design. As a case study, we apply our scheme to the PRESENT block cipher that do not show any higher-order side-channel leakage after measuring 150 million power traces.