Improved Side-Channel Resistance by Dynamic Fault-Injection Countermeasures

Jan Richter-Brockmann, T. Güneysu
{"title":"Improved Side-Channel Resistance by Dynamic Fault-Injection Countermeasures","authors":"Jan Richter-Brockmann, T. Güneysu","doi":"10.1109/ASAP49362.2020.00029","DOIUrl":null,"url":null,"abstract":"Side-channel analysis and fault-injection attacks are known as serious threats to cryptographic hardware implementations and the combined protection against both is currently an open line of research. A promising countermeasure with considerable implementation overhead appears to be a mix of first-order secure Threshold Implementations and linear Error-Correcting Codes.In this paper we employ for the first time the inherent structure of non-systematic codes as fault countermeasure which dynamically mutates the applied generator matrices to achieve a higher-order side-channel and fault-protected design. As a case study, we apply our scheme to the PRESENT block cipher that do not show any higher-order side-channel leakage after measuring 150 million power traces.","PeriodicalId":375691,"journal":{"name":"2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP49362.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Side-channel analysis and fault-injection attacks are known as serious threats to cryptographic hardware implementations and the combined protection against both is currently an open line of research. A promising countermeasure with considerable implementation overhead appears to be a mix of first-order secure Threshold Implementations and linear Error-Correcting Codes.In this paper we employ for the first time the inherent structure of non-systematic codes as fault countermeasure which dynamically mutates the applied generator matrices to achieve a higher-order side-channel and fault-protected design. As a case study, we apply our scheme to the PRESENT block cipher that do not show any higher-order side-channel leakage after measuring 150 million power traces.
动态故障注入对策提高侧通道电阻
侧信道分析和故障注入攻击被认为是对加密硬件实现的严重威胁,目前对两者的联合保护是一个开放的研究方向。一种很有前途但实现开销很大的对策似乎是一阶安全阈值实现和线性纠错码的混合。本文首次采用非系统码的固有结构作为故障对策,动态改变应用的发生器矩阵,实现高阶侧信道和故障保护设计。作为一个案例研究,我们将我们的方案应用于PRESENT分组密码,该分组密码在测量1.5亿个功率走线后没有显示任何高阶侧信道泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信