Mandates and Monetary Rules in a New Keynesian Framework

S. Deák, P. Levine, T. Pham
{"title":"Mandates and Monetary Rules in a New Keynesian Framework","authors":"S. Deák, P. Levine, T. Pham","doi":"10.2139/ssrn.3702618","DOIUrl":null,"url":null,"abstract":"We develop a general mandate framework for delegating monetary policy to an instrument-independent, but goal-dependent central bank. The goal of the mandate consists of: (i) a simple quadratic a loss function that penalizes deviations from target macroeconomic variables; (ii) a form of a Taylor-type nominal interest-rate rule that responds to the same target variables; (iii) a zero-lower-bound constraint on the the nominal interest rate and (iv) a long-run (steady-state) inflation target. The central bank remains free to choose the strength of its response to the targets specified by the mandate. An estimated standard New Keynesian model is used to compute household-welfare-optimal mandates with these features. We find two main results that are robust across a number of different mandates: first, the optimized rule takes the form of a Taylor simple rule close to a price-level rule. Second, the optimal level of inflation target, conditional on a quarterly frequency (probability) of the nominal interest hitting the ZLB of 0.025, is close to the typical target annual inflation of 2% and to achieve a lower probability of 0.01 requires an inflation target of 3.5%.","PeriodicalId":138376,"journal":{"name":"ERN: Central Banks - Policies (Topic)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Central Banks - Policies (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3702618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a general mandate framework for delegating monetary policy to an instrument-independent, but goal-dependent central bank. The goal of the mandate consists of: (i) a simple quadratic a loss function that penalizes deviations from target macroeconomic variables; (ii) a form of a Taylor-type nominal interest-rate rule that responds to the same target variables; (iii) a zero-lower-bound constraint on the the nominal interest rate and (iv) a long-run (steady-state) inflation target. The central bank remains free to choose the strength of its response to the targets specified by the mandate. An estimated standard New Keynesian model is used to compute household-welfare-optimal mandates with these features. We find two main results that are robust across a number of different mandates: first, the optimized rule takes the form of a Taylor simple rule close to a price-level rule. Second, the optimal level of inflation target, conditional on a quarterly frequency (probability) of the nominal interest hitting the ZLB of 0.025, is close to the typical target annual inflation of 2% and to achieve a lower probability of 0.01 requires an inflation target of 3.5%.
新凯恩斯主义框架下的授权和货币规则
我们开发了一个通用的授权框架,将货币政策委托给一个工具独立但目标依赖的中央银行。任务的目标包括:(i)惩罚偏离目标宏观经济变量的简单二次损失函数;(ii)一种对相同目标变量作出反应的泰勒式名义利率规则;(iii)名义利率下限为零的约束;(iv)长期(稳态)通胀目标。欧洲央行仍可自由选择其应对授权规定目标的力度。一个估计的标准新凯恩斯模型被用来计算具有这些特征的家庭福利最优任务。我们发现两个主要结果在许多不同的任务中都是稳健的:首先,优化规则采用接近价格水平规则的泰勒简单规则的形式。其次,以名义利率达到ZLB 0.025的季度频率(概率)为条件的最佳通胀目标水平,接近2%的典型年度通胀目标,而要实现较低的0.01的概率,则需要3.5%的通胀目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信