Environmental sound sources classification using neural networks

S. Stoeckle, N. Pah, D.K. Kumar, N. McLachlan
{"title":"Environmental sound sources classification using neural networks","authors":"S. Stoeckle, N. Pah, D.K. Kumar, N. McLachlan","doi":"10.1109/ANZIIS.2001.974112","DOIUrl":null,"url":null,"abstract":"Noise pollution is the greatest single environmental issue faced by many urban centres in the world. Current techniques used for monitoring sound do neither provide adequate information for designers and planners, nor determine many of the sound parameters that influence perception. The overall aim of this research is to provide new strategies for acoustic monitoring of complex urban environments. The specific aim of this research is to determine features of sound from commonly existing sources to enable automated source recognition. This paper reports the use of Fast Fourier Transforms in order to produce spectral data of sounds from different sources for the classification using neural networks.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Noise pollution is the greatest single environmental issue faced by many urban centres in the world. Current techniques used for monitoring sound do neither provide adequate information for designers and planners, nor determine many of the sound parameters that influence perception. The overall aim of this research is to provide new strategies for acoustic monitoring of complex urban environments. The specific aim of this research is to determine features of sound from commonly existing sources to enable automated source recognition. This paper reports the use of Fast Fourier Transforms in order to produce spectral data of sounds from different sources for the classification using neural networks.
基于神经网络的环境声源分类
噪音污染是世界上许多城市中心面临的最大的环境问题。目前用于监测声音的技术既不能为设计师和规划人员提供足够的信息,也不能确定影响感知的许多声音参数。本研究的总体目标是为复杂城市环境的声学监测提供新的策略。本研究的具体目的是确定常见声源的声音特征,以实现自动声源识别。本文报道了使用快速傅里叶变换来产生不同来源的声音频谱数据,并使用神经网络进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信