Covariance Matrix Decomposition Using Cascade of Linear Tree Transformations

N. T. Khajavi, A. Kuh
{"title":"Covariance Matrix Decomposition Using Cascade of Linear Tree Transformations","authors":"N. T. Khajavi, A. Kuh","doi":"10.1109/GlobalSIP45357.2019.8969543","DOIUrl":null,"url":null,"abstract":"The tree model can be computed efficiently using the Chow-Liu algorithm to minimize the Kullback-Leibler (KL) divergence. This paper goes beyond tree approximations by systematically forming a cascade of linear transformations where each linear transformation represents a tree structure. The linear transformation is found via a Cholesky factorization to provide sparsity to the inverse covariance matrix. We show that each successive additional cascade linear transformation improves the approximation with respect to the KL divergence. We conclude by showing some simulation results on synthetic data examining the quality of tree and non-tree approximations.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The tree model can be computed efficiently using the Chow-Liu algorithm to minimize the Kullback-Leibler (KL) divergence. This paper goes beyond tree approximations by systematically forming a cascade of linear transformations where each linear transformation represents a tree structure. The linear transformation is found via a Cholesky factorization to provide sparsity to the inverse covariance matrix. We show that each successive additional cascade linear transformation improves the approximation with respect to the KL divergence. We conclude by showing some simulation results on synthetic data examining the quality of tree and non-tree approximations.
线性树变换级联的协方差矩阵分解
使用Chow-Liu算法可以有效地计算树模型,以最小化Kullback-Leibler (KL)散度。本文通过系统地形成线性变换的级联,其中每个线性变换表示树结构,从而超越了树的近似。线性变换是通过Cholesky分解来提供逆协方差矩阵的稀疏性。我们证明了每个连续的附加级联线性变换改善了关于KL散度的近似。最后,我们展示了一些合成数据的模拟结果,检验了树和非树近似的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信