Application of Weighted Latent Variable Model Predictive Control in Batch Process Temperature Control

Faisal Al Thobiani, Muneer Ammami, A. Shamekh, A. Altowati
{"title":"Application of Weighted Latent Variable Model Predictive Control in Batch Process Temperature Control","authors":"Faisal Al Thobiani, Muneer Ammami, A. Shamekh, A. Altowati","doi":"10.1109/i2cacis54679.2022.9815273","DOIUrl":null,"url":null,"abstract":"This paper presents a Weighted version of the Latent Variable Model Predictive Control (WLV-MPC) to address the control solution instability of the original LV-MPC algorithm that is related to the loading matrix decomposition. The suggested idea is firstly applied in a system identification framework where a modified version of an iterative Least Squares (LS) technique supported with the Upper Diagonal (UD) factorization algorithm is implemented in model parameter optimization. The second part illustrates the derivation of the WLV-MPC through penalizing the loading matrices that form the basis of the designed cost function. The use of the D matrix to penalize the formulated Hessian matrix in Quadratic Programming (QP) has significantly improved the solution stability. The performance of the proposed approach has been verified through a numerical example and in the temperature control of a batch process benchmark.","PeriodicalId":332297,"journal":{"name":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"274 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i2cacis54679.2022.9815273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Weighted version of the Latent Variable Model Predictive Control (WLV-MPC) to address the control solution instability of the original LV-MPC algorithm that is related to the loading matrix decomposition. The suggested idea is firstly applied in a system identification framework where a modified version of an iterative Least Squares (LS) technique supported with the Upper Diagonal (UD) factorization algorithm is implemented in model parameter optimization. The second part illustrates the derivation of the WLV-MPC through penalizing the loading matrices that form the basis of the designed cost function. The use of the D matrix to penalize the formulated Hessian matrix in Quadratic Programming (QP) has significantly improved the solution stability. The performance of the proposed approach has been verified through a numerical example and in the temperature control of a batch process benchmark.
加权潜变量模型预测控制在间歇过程温度控制中的应用
本文提出了一种加权版本的潜变量模型预测控制(WLV-MPC),以解决原潜变量模型预测控制算法与负荷矩阵分解相关的控制解不稳定性问题。该思想首先应用于系统辨识框架中,在模型参数优化中实现了基于上对角分解算法的改进迭代最小二乘(LS)技术。第二部分通过惩罚构成设计成本函数基础的加载矩阵来说明WLV-MPC的推导。在二次规划(QP)中,使用D矩阵来惩罚公式化的Hessian矩阵,可以显著提高解的稳定性。通过数值算例和批量工艺基准的温度控制验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信