Functional categorization of objects using real-time markerless motion capture

Juergen Gall, A. Fossati, L. Gool
{"title":"Functional categorization of objects using real-time markerless motion capture","authors":"Juergen Gall, A. Fossati, L. Gool","doi":"10.1109/CVPR.2011.5995582","DOIUrl":null,"url":null,"abstract":"Unsupervised categorization of objects is a fundamental problem in computer vision. While appearance-based methods have become popular recently, other important cues like functionality are largely neglected. Motivated by psychological studies giving evidence that human demonstration has a facilitative effect on categorization in infancy, we propose an approach for object categorization from depth video streams. To this end, we have developed a method for capturing human motion in real-time. The captured data is then used to temporally segment the depth streams into actions. The set of segmented actions are then categorized in an un-supervised manner, through a novel descriptor for motion capture data that is robust to subject variations. Furthermore, we automatically localize the object that is manipulated within a video segment, and categorize it using the corresponding action. For evaluation, we have recorded a dataset that comprises depth data with registered video sequences for 6 subjects, 13 action classes, and 174 object manipulations.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Unsupervised categorization of objects is a fundamental problem in computer vision. While appearance-based methods have become popular recently, other important cues like functionality are largely neglected. Motivated by psychological studies giving evidence that human demonstration has a facilitative effect on categorization in infancy, we propose an approach for object categorization from depth video streams. To this end, we have developed a method for capturing human motion in real-time. The captured data is then used to temporally segment the depth streams into actions. The set of segmented actions are then categorized in an un-supervised manner, through a novel descriptor for motion capture data that is robust to subject variations. Furthermore, we automatically localize the object that is manipulated within a video segment, and categorize it using the corresponding action. For evaluation, we have recorded a dataset that comprises depth data with registered video sequences for 6 subjects, 13 action classes, and 174 object manipulations.
使用实时无标记动作捕捉的物体功能分类
对象的无监督分类是计算机视觉中的一个基本问题。虽然基于外观的方法最近很流行,但其他重要的线索,如功能,在很大程度上被忽视了。心理学研究表明,人类的示范对婴儿的分类具有促进作用,因此我们提出了一种基于深度视频流的对象分类方法。为此,我们开发了一种实时捕捉人体运动的方法。然后使用捕获的数据将深度流暂时分割为动作。然后,通过对主题变化具有鲁棒性的运动捕捉数据的新颖描述符,以无监督的方式对分段动作集进行分类。此外,我们自动定位在视频片段中被操纵的对象,并使用相应的动作对其进行分类。为了评估,我们记录了一个包含深度数据的数据集,其中包含6个主题、13个动作类和174个对象操作的注册视频序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信