Slug Flow Model for Infiltration Into Fractured Porous Media

M. Martinez
{"title":"Slug Flow Model for Infiltration Into Fractured Porous Media","authors":"M. Martinez","doi":"10.1115/imece1999-1022","DOIUrl":null,"url":null,"abstract":"\n A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug behind an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximated by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed.","PeriodicalId":201774,"journal":{"name":"Heat Transfer: Volume 2","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug behind an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximated by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed.
裂缝性多孔介质的段塞流模型
提出了一种周期性裂缝多孔层的瞬态渗透模型。裂缝被视为一个透水的壁槽,水分分布在向前半月板后面的段塞形式。水分从裂隙向非饱和多孔基质的运移是一个非线性扩散过程,可以用自相似解来近似描述。所得模型是一个具有弱奇异核的非线性Volterra积分方程。数值分析提供了在大范围的参数空间上的解,并根据模型中出现的无量纲变量揭示了该段塞的侵彻的渐近形式。数值解证实了Nitao和Buscheck(1991)以及Martinez(1988)早先给出的渐近结果。讨论了裂隙岩石中液体输运的一些意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信