{"title":"A thermal-aware application specific routing algorithm for Network-on-Chip design","authors":"Zhiliang Qian, C. Tsui","doi":"10.1109/ASPDAC.2011.5722232","DOIUrl":null,"url":null,"abstract":"In this work, we propose an application specific routing algorithm to reduce the hot-spot temperature for Network-on-chip (NoC). Using the traffic information of applications, we develop a routing scheme which can achieve a higher adaptivity than the generic ones and at the same time distribute the traffic more uniformly. A set of deadlock-free admissible paths for all the communications is first obtained. To reduce the hot-spot temperature, we find the optimal distribution ratio of the communication traffic among the set of candidate paths. The problem of finding this optimal distribution ratio is formulated as a linear programming (LP) problem and is solved offline. A router microarchitecture which supports our ratio-based selection policy is also proposed. From the simulation results, the peak energy reduction considering the energy consumption of both the processors and routers can be as high as 16.6% for synthetic traffic and real benchmarks.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"51 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this work, we propose an application specific routing algorithm to reduce the hot-spot temperature for Network-on-chip (NoC). Using the traffic information of applications, we develop a routing scheme which can achieve a higher adaptivity than the generic ones and at the same time distribute the traffic more uniformly. A set of deadlock-free admissible paths for all the communications is first obtained. To reduce the hot-spot temperature, we find the optimal distribution ratio of the communication traffic among the set of candidate paths. The problem of finding this optimal distribution ratio is formulated as a linear programming (LP) problem and is solved offline. A router microarchitecture which supports our ratio-based selection policy is also proposed. From the simulation results, the peak energy reduction considering the energy consumption of both the processors and routers can be as high as 16.6% for synthetic traffic and real benchmarks.